On the density or measure of sets and their sumsets in the integers or the circle
Résumé
Let $\mathrm{d}(A)$ be the asymptotic density (if it exists) of a sequence of integers $A$. For any real numbers $0\leq\alpha\leq\beta\leq 1$, we solve the question of the existence of a sequence $A$ of positive integers such that $\mathrm{d}(A)=\alpha$ and $\mathrm{d}(A+A)=\beta$. More generally we study the set of $k$-tuples $(\mathrm{d}(iA))_{1\leq i\leq k}$ for $A\subset \mathbb{N}$. This leads us to introduce subsets defined by diophantine constraints inside a random set of integers known as the set of ``pseudo $s$th powers''. We consider similar problems for subsets of the circle $\mathbb{R}/\mathbb{Z}$, that is, we partially determine the set of $k$-tuples $(\mu(iA))_{1\leq i\leq k}$ for $A\subset \mathbb{R}/\mathbb{Z}$.
Origine | Fichiers produits par l'(les) auteur(s) |
---|