Bilinear optimal control for a fractional diffusive equation - Laboratoire des matériaux et molécules en milieu Agressif [UR4_1]
Pré-Publication, Document De Travail Année : 2022

Bilinear optimal control for a fractional diffusive equation

Résumé

We consider a bilinear optimal control for an evolution equation involving space fractional Laplacian operator of order 0 < s < 1. We first give some existence and uniqueness results for different equations considered in our work. Then, we consider an optimal control problem which consist to bring the state of our model at final time to a desired state. We show that this optimal control problem has a solution that we characterize using the Euler-Lagrange first order optimality conditions. Finally, we establish some weak maximum principle results that allow us to prove the uniqueness of the optimal control.
Fichier principal
Vignette du fichier
2210.17494.pdf (359.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03615512 , version 1 (21-03-2022)
hal-03615512 , version 2 (01-11-2022)

Identifiants

Citer

Cyrille Kenne, Gisèle Mophou, Mahamadi Warma. Bilinear optimal control for a fractional diffusive equation. 2022. ⟨hal-03615512v2⟩

Collections

UNIV-AG LAMIA L3MA
110 Consultations
130 Téléchargements

Altmetric

Partager

More