Normal Cone Approximation and Offset Shape Isotopy - Laboratoire de Modélisation et de Calcul
Rapport (Rapport De Recherche) Année : 2007

Normal Cone Approximation and Offset Shape Isotopy

Frédéric Chazal
David Cohen-Steiner
  • Fonction : Auteur
  • PersonId : 833472
André Lieutier
  • Fonction : Auteur
  • PersonId : 835777

Résumé

This work adresses the problem of the approximation of the normals of the offsets of general compact sets in euclidean spaces. It is proven that for general sampling conditions, it is possible to approximate the gradient vector field of the distance to general compact sets. These conditions involve the $\mu$-reach of the compact set, a recently introduced notion of feature size. As a consequence, we provide a sampling condition that is sufficient to ensure the correctness up to isotopy of a reconstruction given by an offset of the sampling. We also provide a notion of normal cone to general compact sets which is stable under perturbation.
Fichier principal
Vignette du fichier
ApproxGradRR.pdf (305.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

inria-00124825 , version 1 (16-01-2007)
inria-00124825 , version 2 (20-01-2007)

Identifiants

  • HAL Id : inria-00124825 , version 1

Citer

Frédéric Chazal, David Cohen-Steiner, André Lieutier. Normal Cone Approximation and Offset Shape Isotopy. [Research Report] RR-6100, 2007, pp.21. ⟨inria-00124825v1⟩

Collections

INRIA-RRRT
248 Consultations
413 Téléchargements

Partager

More