High-Performance Mechanically Regularized Finite-Element Digital Volume Correlation for Complex Architectured Materials
Résumé
Measuring kinematic fields at the architecture scale of cellular materials is known to be highly challenging in experimental mechanics, in particular because of the geometric complexity of the specimen and the poor texture at this scale. To overcome this obstacle, a solution consists in assisting Digital Volume Correlation (DVC) with a FE-based mechanical regularization. However, such approaches entail a substantial computational burden when considering complex architectured materials along with large volume images. To address this issue, this study proposes a scalable domain decomposition algorithm to efficiently estimate subcellular kinematic fields across large regions of cellular materials.
Origine | Fichiers produits par l'(les) auteur(s) |
---|