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Highlights 12 

 13 

� We present a new dendro-based Neoglacial glacier record for the European Alps 14 

� Ten glacier advances were calendar-dated during the last 4000 years 15 

� Timing of Neoglacial advances proposed here broadly agrees with previous works 16 

� Minor differences between glacier records could arise from glacier response time 17 
 18 

Abstract 19 

 20 

Holocene glacier records from the Western European Alps are still extremely sparse despite 21 

existence of some well-suited sites to use dendrochronology to constrain pre-Little Ice Age 22 

(LIA) glacier advances. Based on the analysis of more than 190 glacially buried Pinus cembra 23 

subfossil logs and wood remains from the Mer de Glace lateral moraine in the Mont Blanc 24 

massif, we present the first dendro-based and calendarically dated Neoglacial glacier 25 

chronology for this area. Main burial events, interpreted as glacier advances, are recorded 26 

between 1610 and 1544+ BC, between 1230+ and 1105+ BC, after 962+/937+ BC, around 27 

802 to 777 BC, after 608+ BC, between 312 and 337 AD, after 606+ AD, between 1120 and 28 

1178 AD, around 1296 AD, and after 1352+ AD – predating historically-known late LIA 29 

maxima. Magnitude of the advances shows increasing trend, culminating with near-30 

Neoglacial maxima during the 7th and 12th-13th century AD glacier advances, and a first LIA/ 31 

Neoglacial maximum reached in the second half of the 14th century AD. Due to uncertainties 32 

about original growth location of some trees, these dates are mostly considered as maximum-33 
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limiting ages for glacier advances. The pattern of Neoglacial events described here is coherent 34 

with Central and Eastern Alps glacier chronologies indicating marked synchronicity of late 35 

Holocene glacier variability and forcing at a regional scale. The Mer de Glace record also 36 

confirms the link between the timing of sediment erosion in a high-elevated glaciated alpine 37 

catchment and subsequent deposition in the pre-alpine lake Le Bourget. These results 38 

highlight the great potential of dendrochronology to establish high-resolution glacier 39 

fluctuation records even in the French Alps. 40 

 41 
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1. Introduction 45 

 46 

Holocene climate variability has been subject to increasing attention for about two 47 

decades (Mayewski et al., 2004; Wanner et al., 2008), especially as evidences emerged of a 48 

late 20th/early 21st century warming of unprecedented nature on the last millennium timescale 49 

– at least as regards the European Alps (e.g. Büntgen and Tegel, 2011; Trachsel et al., 2012). 50 

Accurate knowledge of both amplitude and timing of Holocene climate change is thus 51 

necessary to assess the natural variability range, to identify the main forcings and to model the 52 

future climate (Jansen et al., 2007; Humlum et al., 2011; Wanner et al., 2011). 53 

High-altitude environments are sensitive to slight change in forcing and a variety of 54 

proxies have been investigated to reconstruct Holocene climate variability in the European 55 

Alps: paleoecological indicators of the treeline ecotone altitudinal variation and composition 56 

(Haas et al., 1998; Tinner and Theurillat, 2003; Nicolussi et al., 2005; Blarquez et al., 2010; 57 

Berthel et al., 2012), lithological and geochemical lake-sediment properties (Schmidt et al., 58 

2008; Giguet-Covex et al., 2012), pollen and chironomid assemblages (David, 1997, 2010; 59 

Heiri et al., 2003; Ilyashuk et al., 2011), and stable isotopes measured in speleothems 60 

(Vollweiler et al., 2006; Boch and Spötl, 2011). Limitations of such studies could be either: 61 

(i) their relatively weak chronological constraints, (ii) reconstruction uncertainties resulting 62 

from proxy calibration, and (iii) potentially marked anthropogenic impact, hindering 63 

identification of climate signal – especially during the second part of the Holocene. 64 

Alpine glaciers are widely recognized as reliable indicators of climate variations on inter-65 

annual to multi-millennial timescales (Denton and Karlen, 1973; Hoelzle et al., 2003; Vincent 66 



et al., 2004; Beedle et al., 2009). Glacier length changes represent a mixed signal of the 67 

variations in summer temperature and winter accumulation (mass-balance forcings) delayed 68 

by a time lag (Johannesson et al., 1989; Müller, 1988). They have been successfully used to 69 

infer equilibrium line altitude (ELA) and temperature variations (e.g. Leclerq and Oerlemans, 70 

2012). Beyond the instrumental period, glacier variation reconstructions rely on documentary 71 

evidences for the last few centuries and on glacio-geomorphological (i.e. dating of moraine 72 

succession) or glacio-lacustrine investigations for the whole Holocene period.  73 

To test for potential synchronicity of past climatic events through correlation – and by the 74 

way, to assess palaeo-circulations patterns – glacier chronologies have to be at high-75 

resolution, i.e. relatively continuous with information at a decadal or sub-decadal scale 76 

(Winkler and Matthews, 2010; Kirkbride and Winkler, 2012). Beyond the last few centuries 77 

this goal can only be achieved either by dendrochronological calendar dating of glacially-78 

sheared or buried subfossil tree remains in glacier forefields (Luckman, 1995; Nicolussi and 79 

Patzelt, 2001; Holzhauser et al., 2005; Wiles et al., 2011) or by a tight constraint on glacier-80 

fed lake sediment deposition (Leeman and Niessen, 1994; Bakke et al., 2010). However, 81 

relatively few lacustrine settings have been analysed in the Alps, unlike other glaciated 82 

regions (e.g. Dahl et al., 2003). Terrestrial-based glacier chronologies have high climatic 83 

reconstruction potential but must be evaluated with regard to their representativeness. End-84 

moraine ridge stratigraphy most often lacks continuity and records only a part of the effective 85 

glacier advances (Gibbons et al., 1984; Kirkbride and Brazier, 1998; Kirkbride and Winkler, 86 

2012). This is especially true since the LIA cold period led to one of the most prominent 87 

Holocene advance in the Northern Hemisphere (Davis et al., 2009). A way to overcome this 88 

problem to some extent is to study lateral moraine stratigraphy, providing a more complete 89 

picture of successive Neoglacial advances (Röthlisberger and Schneebeli, 1979; Osborn, 90 

1986; Holzhauser and Zumbühl, 1996; Osborn et al., 2001; 2012; 2013; Koch et al., 2007; 91 

Jackson et al., 2008; Reyes and Clague, 2004). The Neoglacial is defined here as the second 92 

part of the Holocene during which alpine glaciers experienced repeated advances of near-93 

Holocene maxima amplitude, depending on their relative response time.  94 

The European Alps are among the best-documented regions worldwide concerning the 95 

Holocene glacier variations at different timescales (Nicolussi and Patzelt, 2001; Holzhauser et 96 

al., 2005; Joerin et al., 2006; 2008; Nicolussi et al., 2006; Nussbaumer et al., 2007; 97 

Holzhauser, 2010; Goehring et al., 2011; 2012; Nicolussi and Schlüchter, 2012; Nussbaumer 98 

and Zümbuhl, 2012). Indeed, distribution of the dated sites is spatially heterogeneous: unlike 99 

Central and Eastern Alps where glacio-geomorphological studies have been conducted since 100 



the 1960s (see Ivy-Ochs et al., 2009 for a comprehensive review), there have been so far very 101 

few such studies in the French Alps despite their current glaciation (ca. 15 % of the Alpine 102 

glacier area; Paul et al., 2011) and their location with respect to zonal circulation (Fig. 1A). 103 

The present study aims to fill this gap and to propose a precise chronology of glacier 104 

variations in the Mont Blanc massif (MBM) for the Neoglacial period based on dating of 105 

glacially buried subfossil wood material in the moraines of Mer de Glace. 106 

 107 

Fig. 1  108 

 109 

2. Study site 110 

 111 

Mer de Glace (hereafter MdG; 45°55’N, 06°55’E) is the largest glacier in the French Alps, 112 

covering 30.6 km2 (without including former tributary Glacier de Talèfre; 2008 data: Gardent 113 

et al., 2014) and flowing along 12 km between 4070 m and 1520 m a.s.l. (Fig. 1B). MdG 114 

sensu stricto corresponds to the 5-km-long distal area of the glacier. Maximum tongue 115 

thickness reached 420±10 m in 1961 at the Glacier du Tacul, downstream the Séracs du Géant 116 

icefall (bedrock map in Lliboutry and Reynaud, 1981) and remains ca. 380 m today at this 117 

location. Thickness decrease downstream to ca. 160 m today near Les Echelets and ca. 90 m 118 

right from the Montenvers. Average ELA was 2880 m for five of the main north-facing MBM 119 

glaciers, among which Glacier de Leschaux, over the period 1984-2010 (Rabatel et al., 2013). 120 

Mean annual temperature and precipitation were 6.5°C and 1238 mm, respectively, at nearby 121 

Chamonix-Le Bouchet station (1054 m a.s.l.) for the period 1961-1990 (Météo France data).  122 

The MdG catchment is formed by granite of Late Hercynian age (Bussy and von Reumer, 123 

1993; Leloup et al., 2005). Debris-supply to the glacier tongue mainly results from rockfalls 124 

in the accumulation area (e.g. Ravanel et al., 2010) and paraglacial reworking of till material 125 

from the lateral moraines. Since the end of the LIA, the debris cover onto the MdG s.s. 126 

expanded (Deline, 2005): 51% of the glacier ablation zone was debris-covered in 2008 127 

(Deline et al., 2012). Thinning of the tongue has strongly accelerated over the last two 128 

decades and reached ca. 4 m a-1 since 2000 (Berthier et al., 2004; Berthier and Vincent, 2012). 129 

This results in a 65 m lowering of the tongue right from Montenvers since the mid-1980s. 130 

 131 

Fig. 2  132 

 133 



The right lateral moraine (RLM) of MdG is a typical example for marginal deposits of 134 

large temperate glaciers (Winkler and Hagedorn, 1999; Curry et al., 2006): tens of meters 135 

high (up to ca. 200 m right from the glacier terminus; Fig. 2) and consisting of multiple 136 

stacked till units over-consolidated by basal accretion during successive advances (e.g. Lukas 137 

et al., 2012). The most prominent lateral moraine of MdG is located on the orographic right 138 

side, whereas deposits are almost absent from the left side of the valley in this region (Fig. 2). 139 

The outermost frontal moraine ridges located in the main valley floor are of late-LIA ages 140 

(Wetter, 1987; Nussbaumer et al., 2007). In the investigated sector, only the erosion edge is 141 

present in lateral position indicating that superposition (sensu Röthlisberger and Schneebeli, 142 

1979) may have prevailed here, or that the latest deposited ridges have disappeared due to 143 

erosion. Two main sectors with subfossil wood outcrops were studied. The MOTT sector 144 

(right from the Rochers des Mottets roches moutonnées area) extends from ca. 1460 to 1700 145 

m a.s.l. and corresponds to the RLM part located downstream of the present-day glacier 146 

terminus; the MDG sector extends from ca. 1700 to 1910 m a.s.l. and corresponds to the 147 

upstream sector, facing Montenvers (Fig. 2). The treeline above the study site roughly follows 148 

the 2100 m a.s.l. contour line. The timberline is composed of a monospecific multicentennial 149 

Pinus cembra stand in the cliffs above MDG sector, mixed with Larix decidua northward 150 

above MOTT sector. 151 

Direct measurement of MdG frontal variations extends back to 1878 AD. This record 152 

indicates an overall retreat of 1.17 km until 2010, and three periods of readvance culminating 153 

in 1896 (+ 174 m), 1931 (+ 237 m) and 1995 (+ 143 m) (Reynaud and Vincent, 2000; C. 154 

Vincent, pers. com., 2011). The total retreat from LIA maxima positions amounts to 2.47 km. 155 

MdG has the longest reaction time among the northward flowing MBM glaciers. Its front 156 

readvances 11-14 yrs after nearby and most reactive (ca. 2-3 yrs) Glacier des Bossons 157 

(Martin, 1977; Reynaud, 1993; Nussbaumer and Zümbuhl, 2012). MdG dendro-reaction time 158 

(sensu Pelfini et al., 1997) has been fixed to 13 yrs over the 1878-2008 AD period by cross-159 

correlation with a living Pinus cembra chronology distant from 6 km (Le Roy, 2012). 160 

Calculation of the response time according to the Jóhannesson et al. (1989)’s formula give ca. 161 

40 yrs, whereas the analytical length response time has been fixed to 56 yrs by Klok and 162 

Oerlemans (2003). Note that these calculations do not take into account real-world 163 

topographical features. As a whole, these data indicate a glacier able to respond to decadal-164 

scale cold events within an advance/retreat secular trend (Reynaud and Vincent, 2000; 165 

Nussbaumer et al., 2007). 166 

 167 



3. Material and methods 168 

 169 

3.1. Sampling procedure 170 

 171 

Fieldwork extended over four seasons between 2009 and 2012. Sections of the lateral 172 

moraine were surveyed from the opposite valley side with a telescope (�30 to �70 173 

magnification) to locate the wood outcrops. Access was achieved both from the moraine crest, 174 

rappelling down the proximal face, and from its base, climbing up the gullies to reach the 175 

lowest till exposures.  176 

Tree remains embedded-in-till appear most often as part of wood layers traceable over a 177 

few meters to tens of meters, some which may contain tens of debris ranging from centimetric 178 

fragments to logs several meters long and 80 cm in diameter. More rarely they come as 179 

isolated findings. Some of these woody layers are in contact with stratigraphical 180 

discontinuities such as paleosol, debris-rich litter horizons or fluvioglacial deposits (stratified 181 

gravels and sands). A single stump has been found unequivocally in situ, rooted in till 182 

material. Because of the difficulties to interpret 14C dating of paleosol, priority was given to 183 

dendrochronological sampling. Some branches were also sampled in litter layers for 184 

radiocarbon dating. Additionally, the talus slope was carefully inspected. An exhaustive 185 

sampling of all subfossil-look tree remains lying on surface, or partly buried by colluviums, 186 

with long enough dendro-series (> ca. 60 rings) was carried out. Closely-spaced surveys 187 

conducted during each field seasons have permitted to determine with confidence from which 188 

woody layers in the till some reworked samples of the talus were coming from (e.g. Fig. 189 

S4C). 190 

Several disks were cut from each log and fragment with a chainsaw. The best preserved 191 

parts of the trunks were sampled (e.g. in the vicinity of branch incipient for the eroded logs) 192 

to get the longest dendro-series. Scattered patchy bark remains were sampled additionally to 193 

provide a closest estimate for the tree death-date. 194 

The moraine wood sample locations were surveyed with a TOPCON total station 195 

(accuracy < 1 m), and talus detrital woods with a GARMIN handheld GPS (accuracy ± 5 m). 196 

The altitude of the moraine erosion edge was recorded right from each subfossil wood sector. 197 

Their position is thus given in term of vertical distance to the moraine erosion edge. 198 

 199 

3.2. Preparation and dendro-analysis 200 



 201 

All sections were air-dried and sanded with progressively finer paper. The entire surface 202 

was polished to identify the longest and undisturbed measure paths. This procedure allows 203 

tracking rings over the whole circumference, and thus easier identification of missing rings. 204 

The narrowest rings sectors were prepared with razorblade and chalk powder or water to 205 

enhance rings boundaries definition. Ring-width measurements were recorded to the nearest 206 

0.01 mm using a LINTAB 5 device associated to the TSAP software package (Rinntech, 207 

2005). At least 3 radii were measured per sample and up to ca. 15 in the case of complex 208 

paths and/or poorly preserved samples. Radii were then crossdated according to standard 209 

dendrochronological procedures and averaged to produce mean individual series. Floating 210 

chronologies were built through crossdating of the individual series. The synchronization 211 

relies on statistical tests including the Gleichläufigkeit (Glk) and modified t-values (Baillie 212 

and Pilcher, 1973) computed in TSAP, as well as the visual inspection of curves fitting on 213 

screen. Samples species were determined under microscope according to anatomical keys 214 

(e.g. Schweingruber, 1990). 215 

Moraine subfossil woods exhibit most of the time biological and mechanical alterations 216 

(Schweingruber, 2007). Rings were counted but not measured in the altered sectors, and 217 

added at the end of the measured series to provide a closer tree death-date estimate. Peripheral 218 

rings’ counting was conservative to account for possible mis-interpretation. Therefore, a 219 

minimum tree lifespan (MTL) was estimated ending, most of the time, with a terminus post 220 

quem for tree-death, hereafter called virtual death-date and indicated by a “+”. As sapwood 221 

identification is not possible with subfossil Pinus cembra, the quantification of missing 222 

external rings due to abrasion is tricky. A qualitative confidence level for the dendro-date is 223 

thus proposed, based on the sample preservation and the reliability of the counting (Tab. 1). It 224 

should be noted that the presence of bark or of the last ring (i.e. the so-called waney edge) 225 

does not always mean a yearly resolution for the tree death, as outermost rings may not be 226 

countable. A pith-offset estimate (PO) was carried out when the inner part of a sample was 227 

missing. The number of missing years was estimated through comparison with a Regional 228 

Growth Curve build from 335 Pinus cembra individual series sampled in the Central French 229 

Alps (Briançonnais area, ca. 120 km south of MBM; J-L. Edouard, unpublished data). 230 

In sectors exhibiting a high density of subfossil wood remains and very large trunks, an 231 

effort was made to identify the fragments that belonged originally to the same tree (Tegel et 232 

al., 2012; Pichler et al., 2013). The proposed groupings rely on: (i) topographical field 233 

evidence, (ii) growth parameters (growth level and trend, PO, end-series date), and (iii) 234 



crossdating values, for which conservative empirical thresholds were fixed (i.e. that mimic 235 

average intra-tree radii correlation). The highest crossdating value between two definitely 236 

different MdG trees, as well as the highest observed crossdating value between MdG and 237 

nearby Glacier d’Argentière subfossil samples both coincide (tBP ~ 10.5). This threshold was 238 

thus used as lower limit for the groupings, although far lower values could characterize for 239 

instance samples from different heights on a single stem. All selected radii were then 240 

averaged as single tree series. In case some groupings were not identified this doesn’t affect 241 

ages assigned to glacier advance which are based on the youngest age from each 242 

stratigraphically-defined layer. 243 

 244 

3.3. Absolute dating 245 

 246 

As a first step, radiocarbon dating was carried out on some samples to anchor floating 247 

chronologies in time and on some other samples difficult to date by dendrochronology. The 248 

radiocarbon samples include 5 to 15 rings and were taken after dendrochronological analysis, 249 

in order to know precisely their position in the dendro-series (Tab. 1). Measurements were 250 

carried out at the French LMC14 facility in Saclay (Cottereau et al., 2007) and at Beta 251 

Analytic Inc. (USA). Dating were calibrated with the CALIB 6.0 program (Stuiver et al., 252 

2011) using INTCAL09 (Reimer et al., 2009). Dating results for samples only constrained by 253 
14C dating are reported by (i) the weighted average of the probability distribution function 254 

(Telford et al., 2004) to which the distance to the outermost counted ring was added; and (ii) 255 

the 2-sigma calibration range in brackets.  256 

As no multi-millennial absolutely dated dendrochronological reference curve yet exists for 257 

the French Alps (see Edouard et al., 2002 and Edouard and Thomas, 2008 for an overview of 258 

existing data in this region) our resulting floating chronologies and single tree series were 259 

crossdated with the Eastern Alpine Conifer Chronology (EACC; Nicolussi et al., 2009). This 260 

chronology is based on living, dry-dead and subfossil mostly Pinus cembra (82%) wood 261 

sampled at the timberline (ca. 2000-2400 m a.s.l.) in the western Austrian massifs (ca. 350 km 262 

east of MBM; Fig. 1). In this paper, all dating results are reported according a time scale 263 

which includes a “year 0” at the beginning of the Common Era (dates of Common Era are 264 

labelled AD). Consequently, the true historical date of an event before this "year 0" is one 265 

year earlier than those reported hereafter (dates before Common Era are labelled BC). For 266 

instance, the reported dendro-date for the sample MDG.T120 is 1620 BC, but its death 267 

occurred in the calendar year 1621 BC.  268 



 269 

3.4. Deriving an altitudinal glacier variations curve on its lateral margin 270 

 271 

To constrain Neoglacial variations, altitudes of layers containing subfossil tree remains 272 

were compared with known altitudes of the MdG surface during the 20th century derived from 273 

field surveys (Reynaud and Vincent, 2000). In addition, profiles across the glacier through the 274 

moraine sampling sites were computed from digital elevation models (DEMs) obtained from 275 

old maps and photogrammetric surveys. The value used was the mean glacier surface altitude 276 

on its right margin. Analogues for the most extended Neoglacial glacier positions were not 277 

found during the 20th century and were thus estimated from the earliest photographs of the site 278 

dating back to the second half of the 19th century (Nussbaumer et al., 2007). 279 

 280 

Fig. 3  281 

 282 

Tab. 1  283 

 284 

4. Results  285 

 286 

4.1. Dendro-dating 287 

 288 

Dendrochronological measurements were carried out on 205 samples from which 180 289 

(88%) have been absolutely dated. The robustness of the MdG Pinus cembra series 290 

crossdating against EACC confirms a strong common signal across the Alps (Nicolussi et al., 291 

2009). This high crossdating efficiency was made possible because of the low specific 292 

richness observed at MdG. Tree species determination indicates that 93% of the samples 293 

belong to Pinus cembra L. Other recorded taxa are Acer sp., Larix decidua Mill and Picea 294 

abies (L.) Karst (Tab. 1). Among dated series, the 10 samples from BAY moraine crest site 295 

are dry-dead fallen logs from the last millennium, and the 10 samples from moraine Site 7 296 

were dated from the 20th century (see Fig. 2 for the location and the Supplementary Materials 297 

for the description of the sites). All remaining moraine subfossil samples series were then 298 

grouped into 118 single trees series (as described in section 3.2). Additionally, 28 radiocarbon 299 

dates were determined (Tab. 1). Among these, 10 samples (including five twigs) are only 300 

constrained by radiocarbon dating.  301 



Fig. 3 presents all dated subfossil samples – both with dendrochronology and radiocarbon 302 

(except the twigs) – together with the dry-dead samples from BAY site and the 20th century 303 

samples from Site 7. The clustering of the subfossil samples allowed the development of five 304 

mean ring-width chronologies covering the last four millennia with some minor gaps: from 305 

2027 to 1544 BC, 1492 to 608 BC, 23 BC to 522 AD, 523 to 1339 AD and 1396 to 1854 AD. 306 

The 600 BC-0 period stands out by the relative lack of available subfossil wood remains as 307 

only one sample was recovered. MTL (including PO estimate) range for subfossil woods 308 

(except the 20th century samples) is comprised between 72+ and 487+ yr, with a mean of 309 

232±91 yr. Mean ring-width (MRW) is 0.92±0.49 mm yr-1. Average MTL and MRW are 310 

displayed in Fig. 3 for each chronology. The main phases of tree germination and burial are 311 

reported on Fig. 3D to get an overview of stand dynamics – partly related to glacier behaviour 312 

(see section 5.1) – over the last 4 ka.  313 

 314 

4.2. Geolocation 315 

 316 

Spatial data acquired during the field surveys combined with the dating of both the 317 

embedded-in-till samples and the detrital samples reveal marked patterns. The results for the 318 

MDG sector are presented on Fig. 4. Wood outcrops from each time period are clearly 319 

distinct and there is a gradient regarding the age of the outcrops. Oldest samples were found 320 

only at the most upstream location (Sites 10 and 11) then, ages are getting younger 321 

downstream to the medieval period (Sites 5 and 6). Moreover, it is obvious from Fig. 4 that 322 

the detrital samples are found right from outcrops of the same age – some of which have been 323 

sampled – which facilitates assigning some detrital samples to known layers from the 324 

moraine. A complete description of moraine wood outcrops and dating is given in the 325 

Supplementary Materials. 326 

 327 

Fig. 4  328 

 329 

5. Interpretation 330 

 331 

5.1. Extracting past glacier variability from subfossil logs 332 

 333 



Wood found within glacier forefield must be interpreted with respect to the initial growth 334 

location (Ryder and Thompson, 1986). At MdG, field evidence shows that few subfossil tree 335 

remains could be unambiguously considered in situ, i.e. grown at finding place. Such logs are 336 

interpreted as directly related to an advance of MdG. However, two other origins of the wood 337 

material has to be considered here: trees could have grown at other sites of the RLM than the 338 

finding place (i.e. at bedrock outcrops or stabilized moraine ridges) but were killed, 339 

transported and deposited during a glacier advance; or could have fallen from surrounding 340 

slopes and were deposited either (i) on a former moraine crest, (ii) on a former moraine 341 

proximal slope or (iii) on the glacier – prior to burial during a subsequent glacier advance.  342 

In situ tree growth on a moraine ridge is proved for instance by the situation of the 343 

BAY01 stump (Site 6; Fig. S3B). Growth positions on a bedrock outcrop can be assumed, e.g. 344 

for many of the logs found at Sites 9, 10 and 11 (Fig. 2; Fig. 4; Fig. S4-S5). Such bedrock 345 

outcrops in the RLM were probably re-colonized during periods of glacier retreat and lateral 346 

moraine erosion. Trees from such growth sites killed during advances of MdG were deposited 347 

at other parts of the moraine as suggested by the high density of subfossil material in directly 348 

downstream locations (e.g. Site 9; Fig. S4A). Such a scenario involving tree recolonization of 349 

moraine proximal slopes has also been discussed at the Lower Grindelwald Glacier 350 

(Holzhauser and Zümbuhl, 1996). Therefore, these sites could have recorded glacier advances 351 

below the level of paleo-moraine crests. Finally, forests above finding places could have been 352 

a third source of origin for MdG logs. As the slope immediately above the RLM is almost 353 

entirely covered with trees and delivers dry-dead wood material to the moraine crest (BAY 354 

site; Fig. S5F) and the glacier surface, it can be assumed that analogue processes were also 355 

active in the past. 356 

Dendrochronological analyses carried out on ten dry-dead logs lying on the present 357 

moraine crests at MdG and nearby Trient Glacier roughly suggest that bark and waney edge 358 

are preserved for ca. 10 yr and ca. 30 yr from the tree death, respectively (Fig. 3B). On the 359 

other hand, wood remains can be preserved subaerially up to several centuries in this 360 

environment before rotting away, as shown by samples from BAY site (Fig. 3B; Fig. S5F). 361 

These observations suggest that the degree of preservation of outermost rings indicates the 362 

time elapsed between the death of the tree and its burial. A sample with bark or waney edge 363 

over most of its surface resulted from a rapid burial and a short transport distance. It is thus 364 

interpreted as virtually in situ as it records a glacier position through burial with a sub-decadal 365 

temporal precision. On the contrary, a long exposition or a reworking is inferred when 366 

outermost part is shredded or heavily abraded and incrusted with gravels. Large 367 



accumulations of eroded woody remains in contact with a paleo-surface like layer 2 at Site 6 368 

(L2/S6; Fig. S3D) are thus interpreted as avalanched/dry-dead fallen trees on a former 369 

moraine crest, resulting in differential aerobic decay. 370 

 371 

Fig. 5 372 

 373 

Although the link between glacier activity and tree death is not always straightforward 374 

(particularly concerning the highly weathered fragments), the youngest dates in each defined 375 

stratigraphical layers were considered as maximum ages for the till deposition that buried the 376 

layers (Ryder and Thompson, 1986; Reyes and Clague, 2004; Koch et al., 2007). Detrital 377 

woods sampled on the talus slope at the foot of the RLM have generally fallen from 378 

contemporaneous strata sampled in the same sector (Fig. 4; Fig. S4C). Therefore, in some 379 

cases (e.g. detrital samples slightly younger than embedded-in-till samples) they were used to 380 

complement the information given by the woods sampled into the RLM. Maximum limiting 381 

ages for MdG advance are reported on Fig. 5 as well as correlation between the dated organic 382 

levels.  383 

The synthesis of MdG glacier surface variations over the last 4 ka determined from the 384 

dated moraine sites is presented in Fig. 6. Basic principles followed to constrain glacier 385 

variations from the subfossil wood record are those used elsewhere (e.g. Holzhauser, 2009; 386 

2010; Holzhauser et al., 2005). However, given that the woods are not all in situ and their 387 

origin not always known, we took into account these uncertainties in our representation. 388 

When evidences of a paleo-moraine crest are found close to the woods (paleosol, laterally-389 

extensive and debris-rich layer, oxidized horizon), strata are represented by the youngest and 390 

oldest tree death-dates. This interval corresponds to a period of wood accumulation on a 391 

former moraine surface without till deposition. Oldest germination date from trees ‘virtually 392 

in situ’ or ‘of unknown original location’ (either from within the glacier forefield or fallen 393 

from the slope) provides evidence for a ‘probable’ or ‘possible’ glacier absence from the 394 

corresponding level, respectively (Fig. 6).  395 

The magnitude of glacier advances cannot easily be deduced from the vertical spacing of 396 

dated wood horizons within lateral moraines (Kirkbride and Winkler, 2012). Yet we still use 397 

this spacing as a first order estimate for the Neoglacial advances reconstructed here. Finally, 398 

while our record represents thickness variations right from the subfossil wood layers, related 399 



length variations can be assumed as shown by the long time series of direct topographic 400 

measurements available (Reynaud and Vincent, 2000).  401 

The vertical scale used in Fig. 5 is the vertical distance to the moraine erosion edge 402 

(simplified here as moraine crest). However, this scale is not relevant when the relative 403 

distance to the crest is not uniform along the entire forefield for a given advance. This is the 404 

case when two distant sites marking a medium-sized advance are correlated (e.g. the advance 405 

around 600 BC; see Fig. 5). Relative extents with respect to known historical altitude of MdG 406 

surface were thus used in Fig. 6 to provide an homogeneous scale for all periods of advances. 407 

 408 

Fig. 6 409 

 410 

5.2. Subfossil wood-inferred Neoglacial history of MdG 411 

 412 

The first advance dated at MdG occurred during the Löbben period (ca. 1900-1450 BC – 413 

3850-3400 BP; Patzelt and Bortenschlager, 1973). MdG has exceeded the 1993 AD level 414 

from 1544+ BC as shown by the tree MDG119 sampled on the talus slope but which 415 

previously belong to L3/S10 (Fig. S5D). Other well-preserved logs show death in 1610 BC 416 

(MDG.T120), 1581 BC (MDG.T45), 1581+ BC (MDG5-01) and 1570+ (MDG.T117-118), 417 

which indicate that this advance spanned probably the first half of the 16th century BC. It is 418 

not possible to say if clustered virtual death-dates of detrital samples from the prior century 419 

between 1655+ BC and 1620+ BC indicate a previous burial episode during the second half of 420 

the 17th century BC, or if a significant part of outermost rings is lacking on these samples – as 421 

none of them exhibit waney edge (except MDG.T47_G dated to 1655+ BC – not an exact 422 

death-date but a close estimate; Fig. 3A and Tab. 1 caption). Maximum level of the glacier 423 

surface reached during the Löbben advance is not accurately known but could correspond to 424 

the 1950 AD level (altitude of L2/S9; Fig. S4C) or even to the 1939 AD level (altitude of 425 

L1/S10; Fig. S5B). 426 

Death-date of five detrital samples broadly cluster around 1200 BC (1230+ BC to 1105+ 427 

BC). They could record a gradual burial episode marking an advance for which the vertical 428 

extent is not known. However, as evidence of bedrock outcrop recolonization by trees is 429 

proposed for L3/S9 from the 14th or 13th century BC, this Late Bronze Age advance must 430 

necessarily have been weaker than the 1993 AD level. We have not included highly decayed 431 



MDG.T103 to this group as its death estimate at 1295+ BC should reflect an exposition in 432 

surface before being embedded during the Late Bronze Age Advance. 433 

During the Göschenen I period (GI, ca. 1000-400 BC – 2950-2350 BP; Zoller et al., 434 

1966) several advances of MdG can be documented. A maximum age for the first advance 435 

that buried trees is 962+ BC based on dated samples from L3/S9 (Fig. S4D) – or 937+ BC if 436 

we retain detrital samples. It roughly corresponds to the 1993 AD glacier surface level. Dated 437 

samples from L2 of the same site indicate that during the whole 10th century BC trees were 438 

growing higher up on the bedrock outcrop. This 10th century BC advance may has thus 439 

reached and exceeded the 1960-1988 AD level – but not the 1950 AD level – otherwise 440 

contemporary L2 trees would have already been killed at that time. The slightly ‘too old’ age 441 

obtained for the in situ stump MDG5-04 (L2/S10; Fig. S5C) at 1037 cal. BC (1131-978 cal. 442 

BC) does not allow to state whether its death can be linked to the glacier activity. It can have 443 

died and remained in standing position up to its burial during the 10th century BC advance. 444 

The large logs from L2/S9 (Fig. S4C/E), indicating a second GI-advance, show clustered 445 

death-dates (802 BC, 780+ BC and 777 BC). This could mean that the rise of the ice margin 446 

has spanned at least two decades. At that time the glacier exceeded the 1950 AD level and 447 

could have reached the 1939 AD level (altitude of L1/S10). The samples from L1/S9 (Fig. 448 

S4B) were probably buried during the same advance as shown by a virtual death-date based 449 

on wiggle-matching around 813 cal. BC (890-798 cal. BC). The last advance recorded during 450 

GI probably peaked at the end of the 7th century BC, as indicated by samples from both Site 2 451 

and 10. The best preserved sample (MDG5-03; Fig. S5B) indicates a burial shortly after 608+ 452 

BC. This advance has probably exceeded the 1905 AD level and could even have peaked 453 

above the 1890 AD level (ca. 1870 AD level) as indicated by the altitude of L1/S3 and L3/S6. 454 

The paleo-surface upon which the paleosol found in contact with MOTT06 at Site 3 (Fig. 455 

S1B) has developed could thus have been deposited at that time. 456 

The Late Iron Age/Early Roman Era is the most weakly represented time period in the 457 

MdG subfossil tree-ring record (Fig. 3A). Only one detrital sample has been dated from that 458 

period (171+ BC) so far and thereby can not be firmly linked to a glacier burial episode. 459 

Robust evidences for a first advance during the Göschenen II period (GII, ca. 200-850 460 

AD – 1750-1100 BP) is given by the virtually in situ and waney edge-bearing log MOTT01 (-461 

82 m) dated to 312 AD and the fragments MOTT02 (-75 m) dated to 287+ AD and MOTT11 462 

(-50 m) dated to 337 AD – all recording the rising of the ice margin during this event at Site 3 463 

(Fig. S1). The glacier has thus exceeded the 1946 AD level as early as the beginning of the 3rd 464 

century AD (MOTT01; Fig. S1C). The stratigraphical discontinuity observed near MOTT11 465 



sampling site (L3/S3) as organic silt deposition could indicate that the advance has peaked at 466 

ca. 337 AD between the 1939 and 1905 AD levels. However, dating of MOTT13 (312+ AD) 467 

found 30 m below the LIA moraine crest (i.e. 20 m above MOTT11), near layers thought to 468 

have been buried during the 6th century AD, doesn’t fit with this scheme (Fig. S1). It could be 469 

explained either by (i) the lack of a large number of outer rings on sample MOTT13 or (ii) 470 

that the first GII advance peaked effectively at this level (ca. 1890 AD level) sometimes 471 

around the mid-fourth century AD. After this first GII advance, samples at Site 8 provide 472 

evidence for a lowering of the glacier surface below the 1993 AD level around ca. 400+ / 402 473 

AD. However, this retreat may also have occurred later (scenario � and � on Fig. 6; see the 474 

Supplementary Materials and section 6.5 for explanations). Renewed progression of MdG can 475 

be evidenced by tree death-dates in the late-fifth/early-sixth century AD at Site 3 (MOTT05, 476 

485+ AD), Site 4 (MOTT.T06, 491+ AD) and a detrital log (MDG.T90, 525+ AD) that can be 477 

linked to the L3/S6 based on its sampling location. However, as none of these trees are in situ, 478 

the presence of the glacier can not be unambiguously proven at this level (L2/S3; ca. -28 m) at 479 

the beginning of the 6th century. Most reliable evidences for the GII maximum come from Site 480 

3 and Site 6 where two wood fragments (MOTT06 and MDG1-16), both located 24 m below 481 

the crest, have yielded series that crossdate and give death-dates at 603 and 606+ AD, 482 

respectively. The former sample was lying in contact with a paleosol (Fig. S1B) that could 483 

correspond to the paleo-moraine crest deposited during either the last GI advance (ca. 600 484 

BC) or the first GII advance (ca. 340 AD). The second sample had a standing position that 485 

could not, however, be interpreted as an in situ position in the absence of excavation. This GII 486 

maximum advance must have reached ca. 15 m below the LIA moraine crest, thus comparable 487 

to the ca. 1860 AD glacier surface level. 488 

A High Medieval Advance (HMA) is recognized at Site 5 (Fig. S2). The two dendro-489 

dated samples record the rising of the ice level during the 12th century, between 1120 AD and 490 

1178 AD, as their preservation and location near palaeo-surfaces greatly minimizes growth 491 

location uncertainties. This interpretation is reinforced by the five radiocarbon dates virtually 492 

undistinguishable obtained on this vertical transect (Fig. S2). As this site is located at the 493 

northern edge of MDG sub-sector 1 (see Fig. 2), the moraine palaeo-topography at the end of 494 

the medieval period must have been subdued, enabling colonization of the proximal side by 495 

trees. Germination of the virtually in situ MDG1-06 tree just prior to 866 AD could record the 496 

length of the medieval glacier retreat with optimal conditions for tree colonization at that site. 497 

Maximum vertical extent reached during this advance has exceeded the location of MDG1-09 498 



at -19 m (ca. 1870 AD level) but could not have reached the level of L2 (-15 m) at nearby Site 499 

6 – otherwise logs accumulation would have stopped at that time. 500 

Following the HMA, Early LIA advances can be constrained at Site 6 (Fig. S3). The L2 501 

layer has been buried after 1278+ AD. It could have happened after 1296 AD as shown by a 502 

detrital wood with waney edge (MDG.T01) found slightly upstream, below the large bedrock 503 

outcrop separating MDG sub-sectors 3 and 4. The L1 horizon has been buried after 1352+ AD 504 

(MDG1-12; Fig. S3E). The temporal proximity of the different horizons marking HMA and 505 

Early LIA events suggests a period with sustained high levels, interspersed with minor 506 

lowerings of the glacier surface. The 14th century advance was the most important and 507 

longest-lived of the three episodes, depositing the bulk of the 11 m-thick till upon which the 508 

tree BAY01 has germinated around 1559 AD (Fig. S3B). As the maxima of the 17th and 19th 509 

centuries (Nussbaumer et al., 2007) didn’t affect BAY01 growth, this 14th century advance 510 

could have been the LIA/Neoglacial most extensive advance at that site. An alternative 511 

explanation involves the backwall retreat of the moraine edge that could have been important 512 

since the end of the LIA. In this case, the 17th and 19th moraine ridges could have been 513 

slightly higher but have not been preserved.  514 

The Late LIA subfossil wood record is sparse at MdG. Few detrital woods have been 515 

dated between the late 16th and early 19th centuries (Fig. 3). Moreover, it is not possible to 516 

state whether they come from a buried layer already disappeared due to erosion, or if they 517 

were dry-dead trees fallen from the rock cliff, laid some time on the moraine crest, before 518 

they had fallen again due to the moraine backwall retreat. CHAP01 sample could represent a 519 

tree crushed during the early 19th century advance (virtual death-date: 1821+ AD) and 520 

reworked. If it’s the case, this advance could have been the most extensive at that downstream 521 

site (Site 1) since the Early LIA – as CHAP01 germination date is ca. 1575 AD. 522 

 523 

6. Discussion 524 

 525 

6.1 Contribution to the Neoglacial glacier history of the Mont Blanc Massif 526 

 527 

The MdG chronology greatly improves the existing MBM Neoglacial chronology which 528 

was exclusively based on 14C dating until now (Corbel and Leroy Ladurie, 1963; Vivian, 529 

1975; Bezinge and Vivian, 1976; Bezinge 1976; Orombelli and Porter, 1982; Bless, 1984; 530 

Wetter, 1987; Deline and Orombelli, 2005). The MdG record starts at 3.6 ka and thus 531 



confirms that the Löbben glacier advance period led to one of the first Neoglacial maxima in 532 

the Alps (Patzelt and Bortenschlager, 1973; Bircher, 1982; Renner, 1982; Wipf, 2001; 533 

Nicolussi and Patzelt, 2001; Ivy-Ochs et al., 2009; Schimmelpfennig et al., 2012). 534 

Decreasing age downstream the RLM as recorded by the dated samples may represent in part 535 

the multi-centennial trend of glacier advance increasing magnitude during the Neoglacial 536 

from 3.6 ka (Fig. 4). An alternative explanation could involve differential deposition/erosion 537 

of the till mantle. The thinner cover observed in the upstream sector located in the lee of Les 538 

Echelets bedrock outcrop (Fig. 2) favouring the exposure of older sediments. Basal part of the 539 

RLM was thus deposited during previous phases that remain to be precisely dated in MBM. 540 

Only two sites have so far yielded older ages for an Early Neoglacial event – although their 541 

chronological constraint remains imprecise. At Miage glacier, Deline and Orombelli (2005) 542 

argued that damming of the valley by advancing glacier and subsequent start of glacio-543 

lacustrine sedimentation upstream of the dam occurred before ca. 4.8 ka. At Argentière 544 

glacier, Bless (1984) has dated a wood associated with a paleosol located 130 m below the 545 

crest at 3665±80 BP (2290-1780 cal. BC). This organic layer was stratigraphically distinct 546 

from the two closely-spaced Löbben layers located 30 m higher up in the same profile and 547 

dated to ca. 3300 BP (1860-1220 cal. BC). 548 

Some sites sampled by Wetter (1987) at MdG correspond obviously to some of our dated 549 

advances. This author reported dating of the GI advance at 2500±75 BP (795-415 cal. BC) for 550 

woods located 25-30 m below the moraine crest, which is in line with the stratigraphical level 551 

and age obtained for L1/S10 (Fig. S5B). On the other hand, dating at 1740±65 BP (125-430 552 

cal AD) for an in situ stump located 30 m below the crest could indicate that the first GII 553 

advance actually reached this level at Site 3, as discussed above (see section 5.2 and Fig. S1). 554 

Since Wetter’s survey, the lowering of the RLM local base level has partly uncovered its 555 

lower part, which may explain he did not find any Löbben-aged tree remains. 556 

The HMA and Early LIA (12th-14th centuries AD) had likely already been radiocarbon-557 

dated in the MBM. At Trient glacier, a paleosol located 12 m below the crest was dated to 558 

825±55 BP (1045-1280 cal. AD) and record an advance larger than the 1896 AD level (Bless, 559 

1984). At Miage glacier, a trunk fragment embedded-in-till 10 m below the crest has been 560 

dated to 900±40 BP (1035-1215 cal. AD) (Deline, 1999). At MdG, an in situ trunk associated 561 

with a well-developed paleosol located 10 m below the crest was dated to 730±70 BP (1165-562 

1400 cal AD) (Wetter, 1987).  563 

The MdG 14th century AD advance has likely been at least as important as the late LIA 564 

advances of the 17th and 19th centuries as demonstrated by the in situ BAY01 stump growth 565 



location (Fig. S3B). This assumption is supported elsewhere by the dating at 1315-1440 cal. 566 

AD of a paleosol buried by till deposit in outermost position with respect to the 1850 AD 567 

moraine at the Pré-de-Bard glacier (Fig. 1; Deline, 2002). This could indicate as well a 568 

Holocene maximum reached by this glacier during the 14th century advance. 569 

Finally, our record also shed light on the regional vegetation history. The presence of 570 

Pinus cembra is attested since 8.9 ka in the nearby Fiz massif, with relatively high pollen 571 

percentages until 4.6 ka, then decreasing due to deforestation (Fig. 1, Survilly Bog; David, 572 

2010). Our dendro record suggests a continuous presence of mature stands of this taxon 573 

during the last 4 ka on the Bayer slope above the RLM (Fig. 2). This is striking considering 574 

the scarcity of pure Pinus cembra stands in MBM nowadays and the widespread 575 

disappearance of this taxon in the western Alps after 5-4 ka (Ali et al., 2005; Finsinger and 576 

Tinner, 2007; Blarquez et al., 2010; David, 2010; Berthel et al., 2012). This site thus would 577 

have been a refugium for it because of the weak anthropogenic impact on this steep and 578 

remote rock slope. 579 

 580 

6.2 Regional comparison of dendro-based glacier records  581 

 582 

We compare here the dendro-based MdG record with other high-resolution glacier records 583 

from the alpine region: Great Aletsch (GA), Gorner (GO), Lower Grindelwald (LG) 584 

(Holzhauser and Zumbühl, 1996; Holzhauser, 1997; Holzhauser et al., 2005; Holzhauser, 585 

2009; Holzhauser, 2010), Gepatschferner (GP) and Pasterze (PA) (Nicolussi and Patzelt, 586 

2001), as well as some selected data constraining glacier variations during the Neoglacial 587 

(Fig. 7).  588 

During the Löbben period, the last advance peaked after 1544+ BC at MdG – but no later 589 

than 1485-1460 BC as indicated by subsequent tree germination dates in the glacier forefield 590 

(Fig. 3); and after 1555 BC – but no later than 1500-1450 BC – at GP (Nicolussi and Patzelt, 591 

2001). Similarly, at Allalin glacier the germination dates of trees will be killed during the first 592 

GI advance are recorded from 1458 BC (Röthlisberger et al., 1980; Bircher, 1982; 593 

Holzhauser, 2009). No clear evidence was found at MdG for a multi-phased Löbben advance 594 

period as proposed elsewhere in the Alps (e.g. Bircher, 1982; Renner, 1982; Bless, 1984; 595 

Wipf, 2001) or in the Coast Mountains of British Columbia (Osborn et al., 2013). In the Alps, 596 

the authors reported 14C dating of several fossil soils attributed to this period (see review in 597 

Holzhauser, 2010). A first phase may have occurred in the 19th century BC as shown by a 598 

maximum age given by a detrital wood dendro-dated to 1851+ BC at Gorner glacier 599 



(Holzhauser, 2010). This is in phase with a large germination event identified at MdG around 600 

1822 BC±13 yrs (1σ, n=11; Fig. 3D). This cohort could record the forefield recolonization 601 

after a putative first Löbben advance. In the MdG RLM, woody layer from the Löbben period 602 

traceable at nearby Sites 10 and 11 contained trees that died between 1610 and 1544+ BC, but 603 

abundant detrital material could support assumption that this advance was already underway 604 

during the second half of the 17th century BC between ca. 1655+ BC and 1620+ BC (Fig. 605 

3A). This was the case at GP where a first phase of glacier advance occurred between 1660 606 

and 1626 BC which reached the 1930 AD level (Nicolussi and Patzelt, 2001). Detrital input 607 

into the Survilly peat bog also indicates two events constrained by a 14C date at 3557 ± 82 cal. 608 

BP (ca. 1607 BC) sandwiched between the two detrital layers (Fig. 7B; David, 2010).  609 

A burial episode ending the Bronze Age Warm Period could be proposed at MdG 610 

between ca. 1230+ BC and 1105+ BC (3180-3055 BP). As it is constrained only by detrital 611 

samples, maximum position reached during this advance is not known but should lie below 612 

the 1993 AD level. This advance has been recognized around 1200 BC at GP (ca. 1940 AD 613 

level), albeit also on the basis of a limited amount of detrital samples (Nicolussi and Patzelt, 614 

2001). Similar dates came from GA where the glacier started to advance after the BWP 615 

around 1213/1211 BC. 616 

 The GI record is well represented at MdG. Stratigraphical evidence at Sites 9 and 10 617 

shows that at least three discrete advances took place during this period, peaking after 962+ 618 

BC/937+ BC (2912/2887 BP), around 777 BC (2727 BP) and after 608+ BC (2558 BP). This 619 

behaviour is similar to LG and GP where more than one advance were recorded during the 620 

GI. At the same time, GA seem to have experienced a gradual and almost continuous frontal 621 

progression between ca. 1213 BC and 600 BC, punctuated by some still stands (Holzhauser et 622 

al., 2005; Holzhauser, 2009). Evidence for a 10th century BC advance exists also at Allalin 623 

glacier where it is constrained between 959 BC and 927 BC, when the glacier progression 624 

killed 400-500 yrs-old larch trees (Röthlisberger et al., 1980; Bircher, 1982; Holzhauser, 625 

2009). Maximum extent reached by this reactive glacier corresponds to the ca. 1890 AD level 626 

– to be compared with the 2000 AD level exceeded by GA in 941 BC (Holzhauser, 2009). It 627 

should be noted that outside European Alps a very similar picture is described in Glacier Bay, 628 

Alaska. A radiocarbon-dated floating ring-width chronology from Geikie Inlet indicates that 629 

the glacier has started to progress in mature forest around 1259-1183 cal. BC (3209-3133 cal. 630 

BP) and that a major burial event occurred around 974-960 cal. BC (2924-2910 cal. BP). 631 

Germination of the trees killed during this advance occurred from 1650-1400 cal. BC (Wiles 632 

et al., 2011). Then, accurate kill-dates at 802, 780+ and 777 BC probably indicate MdG 633 



progression into a forested slope during the second GI advance. At GP, the GI advance had 634 

two peaks, dated to shortly after 712 BC and a subsequent maximum reached around or after 635 

637 BC. At that time it has exceeded the 1935 AD level, which is quite similar to MdG which 636 

has exceeded at least the 1905 AD level. Broadly speaking, the dates of GI maxima are very 637 

synchronous at MdG, GO and GA: around 608+, 602 and 600 BC, respectively. We found no 638 

evidence for other GI advances after 600 BC, despite high-stands (ca. 1920 AD level) were 639 

reported at Gefrorene Wand Kees (Eastern Alps) around 446+ BC (Nicolussi et al., 2006).  640 

The Late Iron Age-Early Roman Era is the most weakly replicated period in the MdG 641 

dendro-record and could be interpreted either as: (i) a treeline lowering, that has been also 642 

observed in Eastern Alps but where it was mainly anthropogenically-induced (Nicolussi et al., 643 

2005) – however, such an explanation for the MdG sample-gap is unlikely given continuous 644 

presence of trees at that site during the whole LIA; (ii) a period of sustained high glacier level 645 

which prevent the tree recolonization of the forefield – that is however not confirmed by LB 646 

record until 150 BC; or rather (iii) an extended withdrawal period which not allowed the 647 

burial – and therefore the preservation – of the trees. Nevertheless, the preservation of the 648 

lateral moraine (and therefore of older samples) on this multi-centennial time period requires 649 

that there have been some glacier advances which remain to be characterized more precisely. 650 

The first GII advance was very restricted at GA (ca. 1982 AD level) whereas on more 651 

reactive glaciers this advance reached more advanced relative positions: between the 1939 652 

and 1905 AD, or even the 1890 AD level (see Section 5.2 and 6.1) at MdG, and beyond the 653 

1930 AD level at GP. Culmination of this advance yields very similar date at GP and MdG: 654 

just after 336 and 337 AD, respectively. Following that advance we propose a retreat centred 655 

on 400+/402 AD based on samples from Site 8 (the two retreat scenarios are discussed in the 656 

light of paleoclimatic proxies in section 6.5). It may be noted that a possible retreat centred on 657 

370 AD has also been proposed at GA (Holzhauser et al., 2005; H. Holzhauser pers. com., 658 

2014). The main discrepancy in the timing of Neoglacial events at an Alpine scale comes 659 

from the second part of the GII period. The MdG chronology seems to agree with large Swiss 660 

glaciers records (GA and GO; Holzhauser et al., 2005; Holzhauser, 2009; Holzhauser, 2010), 661 

i.e. probably advanced positions already reached at the beginning of the 6th century and near 662 

Holocene maximum reached at the beginning of the 7th century. At GA, the advance is well 663 

constrained between 430 AD (1970 AD level) and 590 AD (1870 AD level), with the highest 664 

progression rate from 532 AD onwards (Holzhauser, 2009), leading to a near-Holocene 665 

maximum ca. 630 AD. Similar dates come from other Swiss glaciers: Ried glacier advanced 666 

around 525 AD, Zmutt glacier crushed a 400 yr-old larch tree in 580 AD, and LG crushed 667 



trees between 527 and 595 AD (Röthlisberger, 1976; Röthlisberger et al., 1980; Holzhauser, 668 

1985; Holzhauser and Zumbühl, 1996; Holzhauser, 2009) – although the most advanced 669 

position achieved at that time by these three glaciers is not precisely known (Holzhauser, 670 

2010). On the other hand, evidences from PA, GP and Suldenferner (Eastern Alps) indicate 671 

that the first millennium AD maximum extent was reached at the beginning of the 9th century 672 

AD (809-834 AD) – with extents exceeding that of 1925, 1920 and 1880 AD, respectively – 673 

and that no maxima occurred at the turn of the 6th-7th century AD (Nicolussi and Patzelt, 674 

2001; Nicolussi et al., 2006; McCormick et al., 2012). The advance in the early 9th century is 675 

also dated on western-Alpine Swiss glaciers among which LG is the best constrained with 676 

dendro-dates spanning 820 to 836 AD (Holzhauser and Zumbühl, 1996; 2003). In the MBM, 677 

sparse proofs of a prominent 9th century advance include 14C and dendro-dating of logs in 678 

stratigraphic positions at Brenva and Argentière glaciers (Orombelli and Porter, 1982; Le 679 

Roy, 2012). Pending new data, a working hypothesis could be that the ‘600 AD advance’ has 680 

been stronger in the western part of the Alps – or that more evidences of it have been 681 

preserved – leading to the ‘First Millennium maximum’. In contrast, evidences for an inverted 682 

hierarchy concerning the ‘830 AD advance’ are unequivocal: this advance has been the 683 

strongest from the first millennium in the Eastern Alps. One can note that MdG behaviour 684 

during the GII period also agree with some North Western North American glaciers. A two-685 

step advance has been described and dated at numerous locations with maxima reached 686 

around 100-250 cal. AD (1850-1700 cal. BP) and 470-500 cal. AD (1480-1450 cal. BP), 687 

separated by a small retreat (Jackson et al., 2008; Hoffmann and Smith, 2013). However, at 688 

other sites only a continuous advance peaking during the 7th or early 8th century AD is 689 

documented (Reyes et al., 2006; Barclay et al., 2009; 2013; Johnson and Smith, 2012). 690 

Finally, the MdG record shows unequivocally that a large advance (HMA) interrupted the 691 

MWP during the 12th century, peaking around 1178 AD. In the Alps, other sites where this 692 

advance was dendro-dated include Ferpècle, LG, Zinal (ca. 1890 AD level), GP (>1930 AD 693 

level), GO (ca. 1954 level) at 1125, 1137, 1159, 1172 and 1186 AD, respectively (Haas, 1978; 694 

Holzhauser, 1985; Röthlisberger et al., 1980; Nicolussi and Patzelt, 2001; Holzhauser, 2010). 695 

At GA, a maximum age of 1100 AD was determined for this advance, corresponding to the 696 

1920 AD level. Advances at that time were also demonstrated recently in a number of 697 

Northern Hemisphere locations (see Koch and Clague, 2011). Early LIA advances peaked 698 

around 1296 AD and after 1352+ AD at MdG – the later likely reached Holocene maxima. 699 

The 14th century maximum is comparable to the LG, GA and GO first LIA maxima reached 700 

around 1338, 1369 and 1385, respectively (Holzhauser et al., 2005). Nonetheless, the 14th 701 



century glacier highstand seems to be less extended in the eastern Alps. GP has exceeded the 702 

1870 AD level in 1284 AD in good agreement with MdG, and again in 1462 AD – without 703 

evidence for reaching a LIA maximum extent in the 14th century. Similarly, PA remained 704 

smaller than the 1890 AD extent around 1350 AD (Nicolussi and Patzelt, 2001). 705 

 706 

Fig. 7 707 

 708 

6.3 Role of glacier response time 709 

 710 

Alpine glacier chronologies show in general a high level of similarity in the timing of 711 

Neoglacial events (Fig. 7). Major differences between the records arise from the relative 712 

magnitude of the different advances. Despite the partial nature of terrestrial Neoglacial glacier 713 

records which lack continuity, those differences – particularly visible for the second-order 714 

advances – could be explained in the light of the respective glacier response times. GA and 715 

GO have a reaction time of ca. 25 yrs (Müller, 1988) and a response time around 80 yrs 716 

according to the Jóhannesson et al. (1989)’s formula. These values are twice those proposed 717 

for MdG. It follows that during the first GII advance, GA reached the 1982 AD level but did 718 

not exceed with certainty the 1970 AD level, whether the MdG advance peaked between the 719 

1939 and 1905 AD levels. During the 12th century AD advance, GO reached the 1949 AD 720 

level but didn’t exceed with certainty the 1940 AD level, whether MdG reached at least the 721 

1870 AD level. In contrast, MdG and LG seems react to climate with quite similar time-lags. 722 

Published analytical length response times are 52 yrs for LG and 56 yrs for MdG (Klok and 723 

Oerlemans, 2003); as 22 yrs and 40 yrs, respectively, with the Jóhannesson et al. (1989)’s 724 

formula. Numerical modelling has yields a length response time in the range 34-45 yrs for LG 725 

(Schmeits and Oerlemans, 1997). Furthermore, the correlation of their length variations over 726 

the last 500 yrs reveals the best fit when setting a 1-yr lead for MdG relative to LG 727 

(Nussbaumer et al., 2011). However, full comparison of the two records on the whole 728 

Neoglacial time period is prevented by the sediment deposition patterns at LG which does not 729 

allow proposing a magnitude scale for its advances prior to the LIA (H. Holzhauser, pers. 730 

com., 2014). GP seems also to have a similar response time as MdG as the Jóhannesson et al. 731 

(1989)’s formula yields ca. 26 years, taking into account present-day values of ablation at the 732 

terminus (M. Stocker-Waldhuber, pers. com., 2014). This is confirmed by the relative extent 733 

reached during most of the Neoglacial advances, quite similar to the levels reached by MdG 734 



(e.g. during the GI maximum, the first GII advance and the 13th century AD advance; see 735 

section 6.2). Finally, it appears that PA has a much delayed response to climate as published 736 

length response time range from 62 yrs to 70-137 yrs according to analytical and numerical 737 

modelling attempts, respectively (Zuo and Oerlemans, 1997; Klok and Oerlemans, 2003). 738 

This is evidenced by its behaviour during the Löbben period or at the beginning of the LIA, 739 

when it was more retracted than most other alpine glaciers. Peat growth in the forefield 740 

indicate that the front was upstream of the present terminus between either, 1800 and 1550 741 

BC, or 1940 and 1430 cal. BC (Nicolussi and Patzelt, 2001; Kellerer-Pirklbauer and 742 

Drescher-Schneider, 2009). Likewise, from the GII to the 17th century AD, it has never 743 

exceeded its 1890 AD level (Nicolussi and Patzelt, 2001). To summarize, we have seen based 744 

on the most robust evidences, that the different glacier behaviours are clearly reflected in the 745 

dendro-based Alpine Neoglacial glacier chronologies. 746 

 747 

6.4 Comparison with regional lake sediment records 748 

 749 

The newly established MdG glacier curve provide the opportunity to directly test 750 

assumptions made about the link between glacier variations in high catchment areas and rate 751 

and origin of sediment deposition in the subalpine Lake Le Bourget (LBo; Fig. 1) as MdG 752 

belongs to the sporadic watershed of the lake (Arnaud et al., 2005, 2012; Debret et al., 2010). 753 

Dendro-death dates providing maximum ages for MdG advances are reported in Fig. 7 754 

together with the titanium (Ti) content measured in core LDB04-1 which is a proxy for the 755 

terrigenous fraction brought by Rhône river flooding into LBo (Jacob et al., 2008; Arnaud et 756 

al., 2012). We also compare our results to the clastic record of proglacial Lake Bramant  757 

located in the Grandes Rousses massif (LBr; Fig. 1). This record has been interpreted as a 758 

proxy for glacier activity in the catchment (Fig. 7F; Guyard et al., 2013). Moreover, it is 759 

particularly sensitive to retreat phases as the lake catchment only includes the western 760 

diffluent part of the Saint Sorlin glacier. To get a broader overview at the North Atlantic scale 761 

we also depicted in Fig. 7E two glacier activity records based on lake sediments from Norway 762 

(Bakke et al., 2010; Vasskog et al., 2012). 763 

A very significant excursion of the K/Ti ratio peaking between 1600 and 1400 BC in LBr 764 

record is highly consistent with our results. It encompasses the MdG advance that peaked 765 

after 1544+ BC, indicating that St Sorlin glacier was also in advanced position at that time. It 766 

may be noted that lake-based reconstructions show a maximum rather centred on 1440 BC 767 

(Fig. 7E/F/H), while there are already evidences of glacier forefields tree recolonization at 768 



that time in the Alps (see section 6.2). This likely highlights the transfer time in the 769 

sedimentary systems. After a retreat of Saint Sorlin glacier during the BWP, a strong rise 770 

occurred from 900 BC which tightly corresponds to the first GII advance at MdG dated to 771 

after 937+ BC. Sustained high values persisted then until 450 BC, which is consistent with 772 

highstands mentioned in Austrian Alps at that time (see section 6.2). From the GII period, it is 773 

noteworthy that almost every MdG advances correspond to a significant detrital peak in LBo. 774 

This is particularly clear for the second GII advance dated to 802-777 BC at MdG, which 775 

corresponds to a sharp rise in terrigenous flux peaking around 773 BC in LBo. Sustained 776 

moderately high levels continue afterwards till around 622 BC. Then, evidence for two 777 

distinct events during the Göschenen II period is unambiguous in both records. The first one 778 

is dated to 337 AD at MdG, which corresponds to the Ti peak at ca. 342 AD in LBo. The 779 

second event is constrained at MdG by two death-dates in 603 and 606+ AD, in good 780 

agreement with a Ti peak around 586 AD in LBo. In contrast, anomalies of K/Ti from LBr 781 

show only a single peak at that time between ca. 400 and 550 AD.  782 

The HMA is well constrained at MdG by virtually in situ and waney edge-bearing woods 783 

that indicate the rising of the ice margin during the 12th century, up to a culmination around 784 

1178 AD (Fig. S2). This is in agreement with a short-lived but strong detrital peak around 785 

1163 AD in LBo and a marked Ti excursion around 1170 AD in LBr. Again, the late 13th 786 

century AD highstand at MdG followed by the first LIA maximum after 1352+ AD closely 787 

corresponds to the lake records. The full sedimentological/erosional LIA conditions in both 788 

lakes seem to begin in the late 13th century AD with a first maximum reached between 1290 789 

and 1320 AD in LBo and a Ti peak centred on 1295 AD in LBr (Fig. 7F/H).  790 

On the other hand, some moderate Ti peaks in LBo record (e.g. 150 to 100 BC), without 791 

correspondence with known MdG advances, could result from anthropogenic action. The 400 792 

BC-400 AD period has been for instance considered a period of anthropogenic-induced soil 793 

erosion – hindering the climatic signal – from the Lake Anterne flood record (Giguet-Covex 794 

et al., 2012). Nevertheless, further work on glacier chronology is needed as several evidences 795 

could suggest an advance during the Roman period: (i) a single tree has been dated to the 796 

early Roman Era (171+ BC) at MdG, insufficient to highlight a burial episode; (ii) a log 797 

located 15 m below the moraine crest at nearby Argentière glacier has been dated to 68 cal. 798 

BC (197-46 cal. BC; Le Roy, 2012); (iii) an advance has ever been proposed during the 799 

Roman period around 50 BC at GP (Nicolussi and Patzelt, 2001 : 45); (iv) a prominent K/Ti 800 

anomaly centred on 70 BC – of similar magnitude to the excursion recorded around 500 AD – 801 



exists in the Lake Bramant record (Fig. 7F; Guyard et al., 2013); and (v) some Scandinavian 802 

glaciers are advancing at that time (Fig. 7E; Bakke et al., 2010).  803 

Interestingly, the three Austre Okstindbreen (northern Norway) late Holocene maxima 804 

occurred synchronously with MdG and alpine glaciers (albeit slightly delayed in the lake 805 

record): between 650 and 760 AD, between 1150 and 1410 and between 1680 and 1900 AD 806 

(Fig. 7E; Bakke et al., 2010). These three maxima were preceded by a well-distinct advance 807 

peaking around 370 AD which can be linked to the first GII advance in the Alps (Fig. 808 

7A/B/C/E). Overall, this means a high synchronicity between Scandinavian and Alpine 809 

glaciers at the multi-decadal scale during at least the last 2000 years. 810 

 811 

Fig. 8 812 

 813 

6.5 Climatic controls of western Alps glacier variations during the Neoglacial 814 

 815 

Comparison of the MdG record with other high resolution glacier records from the Alps 816 

and other mid-latitudes areas reveal a high degree of similarity at a multi-decadal scale (Fig. 817 

7A-E), calling for a strong common forcing. The sun is the main driver of Earth’s climate 818 

system (e.g. Lockwood, 2012) and Holocene variations in solar activity could have modified 819 

the energy balance of the Earth through variations in total solar irradiance (TSI). Based on 820 

proxies correlation, many studies have thus claimed that solar input has paced Holocene 821 

climate (e.g. Bond et al., 2001; Magny, 2004; Magny et al., 2010; van Geel and Mauquoy, 822 

2010) and was an important driver for glacier variations at different times-scales (Wiles et al, 823 

2004; Hormes et al., 2006; Koch and Clague, 2006; Nussbaumer et al., 2011). Yet the 824 

magnitude of TSI changes during the Holocene remains very controversial (e.g. Shapiro et al., 825 

2011; Steinhilber et al., 2009; 2012) and recent modelling efforts have shown that solar 826 

forcing probably had a minor effect on the Northern Hemisphere climate during the last 827 

millennium (Schurer et al., 2014). Similarly, Lüthi (2013) found no significant relationship 828 

between reconstructed ELA series and TSI for the last 1600 yrs in the Alps – except during 829 

the 1700-1950 AD period. Nevertheless, visual comparison of the MdG chronology with a 830 

TSI record show that most of the major Neoglacial advances tightly correspond to abrupt TSI 831 

drop, e.g. around 1500 BC, 1000 BC, 800 BC, 600 AD and 1275 AD (Fig. 8A/B). 832 

The North Atlantic Oscillation (NAO) is the most prominent mode of atmospheric 833 

variability over the North Atlantic Ocean and Northwestern Europe (Wanner et al., 2001). It 834 



has the strongest influence on winter climate. The NAO impact on Alpine climate is 835 

equivocal due to the situation of the chain at the transition between northern and southern 836 

Europe, characterized by opposite NAO patterns. In the Alps, the main control of glacier mass 837 

balance variability is summer temperature (Vincent et al., 2004), but precipitation become 838 

increasingly important to explain mass balance sensitivity in the western part of the range and 839 

close to its northern fringe (e.g. in MBM) – where climate is moister (Marzeion et al., 2012). 840 

Several studies have found an anti-correlation between western alpine glaciers length change 841 

or mass balance data and a NAO index at the decadal scale during the modern period (Six et 842 

al., 2001; Reichert et al., 2001; Imhof et al., 2012; Marzeion and Nesje, 2012; Guyard et al., 843 

2013), while at more sheltered site no correlation was found, even with the winter mass 844 

balance (Thibert et al., 2013). From this, the NAO seems to partly control mass balance in the 845 

northwestern Alps – albeit to a lesser extent than for the more maritime Scandinavian 846 

glaciers. Comparison of the MdG chronology with a NAO reconstruction covering the whole 847 

Neoglacial shows that glacier advance seems to be associated with NAO negative phases or 848 

variable conditions – at least until the GII, and then during the second part of the LIA (Fig. 849 

8B). Persistent positive mode just before and throughout the MWP suggests that another 850 

forcing was responsible for the HMA and Early LIA glacier advances. 851 

Volcanic aerosols released during major explosive eruptions reflect and scatter solar 852 

radiation which results in Earth surface cooling (Robock, 2000). At Holocene scale, an above-853 

average frequency of eruptions characterizes the last two millennia (Castellano et al., 2005). 854 

This forcing was found to be the cause for the onset of the LIA in the second half of the 13th 855 

century (Miller et al., 2012) owing to an exceptional cluster of high magnitude eruptive events 856 

between 1230 and 1275 AD (Gao et al., 2008). This is in phase with the high frequency of 857 

tree death-dates recorded at MdG during the 13th century AD (n=13; Fig. 3) – only surpassed 858 

in our record by the 1650-1550 BC time period (n=16). Apart from the LIA, the volcanic 859 

imprint is likely present in the temperature and glacier records during two others periods. 860 

After a “Löbben interstadial” peaking around 1730-1700 BC which is well marked both in 861 

paleo-temperature proxies and MdG subfossil trees replication (Fig. 8E/F/H), the coldest 862 

interval of the period spans ca. 1660 to 1500 BC with cold peaks centred on ca. 1625 BC and 863 

ca. 1530 BC (Fig. 8F). The first cold pulse is synchronous with the eruption of Thera 864 

(Santorini), radiocarbon-dated between 1660 and 1600 cal. BC (Friedrich et al., 2006), but 865 

which could more tightly corresponds to a growth depression centred on 1628-1627 BC in 866 

trees from several northern hemisphere locations (Baillie and Munroe, 1988; Grudd et al., 867 

2000; Salzer and Hughes, 2007). Similarly, during the Göschenen II period, the so-called 868 



“540 AD event” is also known to be an abrupt volcanic-induced cooling that spans a decade 869 

or so from 536 AD (Baillie, 2008; Larsen et al., 2008; Ferris et al., 2011). This cooling must 870 

have contributed to the 6th/early 7th century glacier advance, as GA show for instance the 871 

highest progression rates from the 530 AD decade. Direct influence of volcanism on climate 872 

is relatively short-lived but could be amplified when multiple events occur at short interval or 873 

through radiative cooling transfer to the ocean (e.g. Stenchikov et al., 2009). These reasons 874 

may explain the volcanic forcing has been substantially driven glacier advances on a decadal 875 

scale during the Neoglacial period. 876 

It is likely that the major advances were caused by the interplay of several forcing like 877 

around 600 AD, in the 13th century AD and during the second part of the LIA. Overall, 878 

proposed MdG chronology appears broadly consistent with independent paleoclimatic 879 

evidences in terms of temperature reconstruction (Fig. 8E/F), which confirms that 880 

temperature, mainly from the warm season, was the main driver of MdG fluctuations during 881 

the Neoglacial. Nevertheless, our proposed withdrawal centred on 400 AD seems to conflict 882 

with available climatic reconstructions. This period was likely cold and humid (Büntgen et al., 883 

2011), unfavorable to a rapid and marked glacial retreat as suggested in our scenario � (Fig. 884 

6). Other candidate periods for such a retreat, allowing the tongue to down waste to ca. the 885 

1993 AD level, could be found either around 500 AD or between 850 and 1050 AD (scenario 886 

�, Fig. 6) according to available paleoclimatic evidences. 887 

 888 

7. Conclusion 889 

 890 

We present here the first high-precision glacier chronology for the westernmost Alps, 891 

establishing a precise constraint on the Neoglacial events in this area. The geographical 892 

setting at MdG allowed a large sampling that permitted to highlight numerous burial episodes 893 

but the scarcity of formally in situ trees somewhat complicates the interpretation of the 894 

datings. Dendrochronologically-dated subfossil wood remains from the right lateral moraine 895 

have permitted to constrain 10 glacier advances between 1600 BC and 1400 AD. Culmination 896 

of these advances occurred: after 1544+ BC (3494 BP), after 1105+ BC (3055 BP), after 937+ 897 

BC (2887 BP), around 777 BC (2727 BP), after 608+ BC (2558 BP), around 337 AD (1613 898 

BP), after 606+ AD (1344 BP), around 1178 AD (772 BP), around 1296 AD (654 BP) and 899 

after 1352+ AD (598 BP). Most of these advances could be tightly linked to Rhône river 900 



flooding events into Lake Le Bourget, confirming this record as a valuable glacial erosion 901 

proxy. 902 

The picture emerging from the MdG forefield is very consistent with other high resolution 903 

glacier variation curves from the European Alps and northwestern North America. It confirms 904 

a millennial trend of glacier growth that culminates during the LIA. Despite general 905 

agreement at regional scale, the major discrepancy between “western” and “eastern” available 906 

Alpine glacier records comes from the first millennium AD (Göschenen II period around 500-907 

850 AD – 1450-1100 BP). More work is needed to determine if it could arise from a real 908 

paleoclimatic difference.  909 

Ongoing sampling effort focusing on other MBM glaciers (especially Glacier 910 

d’Argentière and Glacier des Bossons) should yield additional data and improve this glacial 911 

chronology, particularly concerning several poorly documented periods at MdG like the 912 

Neoglacial onset around the so-called 4.2 ka event, the Roman Era and the Early Medieval 913 

Period (9th century AD). 914 
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MDG1-04 7 PICE 0 y 54 54 1926-1979 AD ****
MDG1-02 7 PICE 0 y 52 52 1928-1979 AD ****  SacA 18338 -

MDG.T25 7 PICE 0 y 43 43 1937-1979 AD ****  SacA 18346 -

MDG.T22 7 PICE 0 y 44 44 1936-1979 AD ****
MDG1-03 7 PICE 0 n 59 59+ 1920-1978 AD ***
MDG1-01 7 PICE 0 n 79 79+ 1900-1978 AD ***  SacA 18576 -

MDG.T21 7 PICE 0 n 50 50+ 1929-1978 AD ***
MDG.T24 7 PICE 0 n 38 38+ 1940-1977 AD ***
MDG.T26 7 PICE 0 n 44 44+ 1933-1976 AD ***
MDG.T23 7 PICE 0 n 61 61+ 1915-1975 AD ***
BAY01 6 PICE 0 n 292 296+ 1559-1850 (1854+) AD ***
CHAP01 1 PICE 0 n 215 247+ 1575-1789 (1821+) AD **  SacA 18347 96-110 310 ± 30 1487-1649 AD 1568 (1713) AD

MOTT07 1 PICE 0 n 141 150+ 1612-1752 (1761+) AD **
MDG.T15 1 PICE c. 100 ? n 146 247+ (1473) 1573-1718 (1719+) AD **
MDG.T02 3 PICE 0 n 149 152+ 1559-1707 (1710+) AD **
MDG.T94 4 PICE 0 n 169 172+ 1523-1691 (1694+) AD **
MDG.T116 1 PICE 0 n 181 183+ 1396-1576 (1578+) AD *
MDG1-12 6 PICE c. 59 n 106 178+ (1175) 1234-1339 (1352+) AD **
MDG.T01 4 LADE 0 y 208 209 1088-1295 (1296) AD ****
MDG1-14 6 PICE c. 65 n 190 264+ (1015) 1080-1269 (1278+) AD **  SacA 22822 137-151 800 ± 30 1184-1275 AD 1235 (1292) AD

MDG.T128 6 PICE c. 25 n 145 172+ (1086) 1111-1255 (1257+) AD ***
MDG.T130 6 PICE c. 65 n 137 218+ (1035) 1100-1236 (1252+) AD **
MDG.T127 6 PICE 16 n 170 191+ (1059) 1075-1244 (1249+) AD **
MDG.T115 6 PICE c. 200 ? y 168 388 (861) 1061-1228 (1248) AD ****
MDG.T09 6 PICE 0 n 215 217+ 1025-1239 (1241+) AD **
MDG.T11 6 PICE c. 23 n 124 148+ (1094) 1117-1240 (1241+) AD **
MDG1-13 6 PICE 0 n 280 283+ 951-1230 (1233+) AD *
MDG.T88 6 PICE 2 n 97 102+ (1129) 1131-1227 (1230+) AD *
MDG.T14 6 PICE c. 53 n 216 282+ (945) 998-1213 (1226+) AD ***
MDG.T20 6 PICE c. 100 ? n 194 299+ (926) 1026-1219 (1224+) AD **
MDG.T65 3 PICE 0 n 83 84+ 1141-1223 (1224+) AD **
MDG.T13 6 PICE 0 n 158 165+ 1033-1190 (1197+) AD **
MDG.T12 6 PICE 0 n 81 82+ 1110-1190 (1191+) AD **
MDG1-18 6 PICE c. 100 ? n 241 355+ (836) 936-1176 (1190+) AD **  SacA 22823 104-113 925 ± 30 1026-1181 AD 1102 (1249) AD

MDG.T91 6 PICE c. 25 n 286 326+ (865) 890-1175 (1190+) AD **
MDG.T17 6 PICE 0 n 64 72+ 1112-1175 (1183+) AD ***
MDG1-09 5 PICE 0 y 98 99 1080-1177 (1178) AD ****  SacA 22826 95-98 915 ± 30 1031-1206 AD 1108 (1111) AD

MDG.T131 6 PICE c. 78 n 172 251+ (927) 1005-1176 (1177+) AD *
MDG.T16 6 PICE c. 35 n 104 140+ (1034) 1069-1172 (1173+) AD **
MDG S1a 5 ACER  SacA 18333 880 ± 30 1042-1221 AD 1147 AD

MDG S2a 5 PCAB  SacA 18334 920 ± 35 1027-1206 AD 1107 AD

MDG S3 5 PICE  SacA 18335 920 ± 30 1028-1185 AD 1105 AD

MDG S4 5 PICE  SacA 18336 865 ± 30 1047-1256 AD 1169 AD

MDG1-15 6 PICE c. 65 n 120 200+ (948) 1013-1132 (1147+) AD **
MDG1-06 5 PICE 0 y 252 255 866-1117 (1120) AD ****  SacA 22820 211-220 960 ± 30 1021-1155 AD 1088 (1128) AD

MDG1-11 6 PICE 0 n 95 101+ - **  SacA 18341 82-91 930 ± 30 1025-1169 AD 1100 (1115) AD

MDG.T89 6 PICE 0 n 412 418+ 666-1077 (1083+) AD *
MDG S5 5 -  SacA 18337 985 ± 30 990-1155 AD 1067 AD

MDG.T38 3 PICE c. 16 n 145 191+ (889) 905-1049 (1079+) AD ***
MDG1-10 6 PICE 0 n 204 225+ 806-1009 (1030+) AD **  SacA 22821 161-174 1130 ± 30 782-989 AD 919 (977) AD

MDG1-08 5 PICE c. 145 ? n 177 323+ (567) 712-888 (889+) AD *  SacA 22825 167-175 1225 ± 30 690-885 AD 794 (802) AD

MOTT.T10 MOTT PICE c. 65 n 117 183+ (538) 603-719 (720+) AD *
MDG1-16 6 PICE 0 n 73 78 529-601 (606+) AD **  SacA 18343 50-54 1660 ± 30 259-529 AD 384 (411) AD

MOTT06 3 PICE c. 44 y 81 125 (479) 523-603 AD ****  Beta 295447 1-4 1540 ± 30 430-591 AD 509 (588) AD

MDG.T90 6 PICE c. 71 n 221 295+ (231) 302-522 (525+) AD *
MOTT.T06 4 PICE c. 145 ? n 93 240+ (252) 397-489 (491+) AD **
MOTT05 3 PICE c. 30 n 285 395+ (91) 121-405 (485+) AD ***
MDG1-20_G 6 PICE 0 n 302 302+ 169-470+ AD *  SacA 22827 126-135 1790 ± 30 132-331 AD 232 (399) AD

MDG.T37 2 PICE 0 n 139 142+ 303-441 (444+) AD **
MDG.T39_G 2 PICE c. 100 ? y 279 379 (24) 124-402 AD ****
MDG2-01 8 PICE c. 71 n 113 217+ (184) 262-374 (400+) AD ***  SacA 22828 101-110 1690 ± 30 256-420 AD 348 (382) AD

MOTT04 3 PICE 0 n 145 177+ 202-346 (378+) AD ***
MDG2-06 8 PICE c. 10 n 252 278+ (90) 100-351 (367+) AD *
MDG2-08 8 PICE 0 n 200 299+ 52-251 (350+) AD *
MOTT11 3 PICE 0 y 348 348 10 BC-337 AD ****
MOTT13 3 PICE c. 16 n 278 311+ (2) 18-295 (312+) AD **
MOTT01 3 ACER 0 y 193 193 120-312 AD ****  Beta 338488 154-158 1680 ± 30 258-425 AD 359 (391) AD

MOTT02 3 PICE 0 n 127 130+ 158-284 (287+) AD ***  SacA 18584 94-103 1875 ± 30 70-225 AD 138 (170) AD

MDG.T41 2 PICE c. 108 ? n 224 339+ (76 BC) 32-255 (262+) AD *

twig

twig

twig

twig

twig
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MOTT10 3 PICE 0 n 152 221+ 12 BC-139 (208+) AD *
MOTT12 3 PICE 0 n 177 179+ 23 BC-153 (155+) AD *
MOTT.T04 MOTT PICE 0 n 105 119+ 17-121 (135+) AD **
MDG.T93 2 PICE 0 n 341 368+ 538-198 (171+) BC ***
MDG5-03 10 PICE 0 n 353 353+ 960-608+ BC ***
MDG.T35 10 PICE 0 n 185 230+ 838-654 (609+) BC *
MOTT09_G 2 ACER c. 100 ? n 277 386+ (1005) 905-629 (620+) BC **
MOTT08 2 ACER c. 15 n 171 217+ (845) 830-660 (629+) BC **  Beta 295448 153-157 2440 ± 30 752-407 BC 561 (513) BC

MOTT.T16 MOTT PCAB c. 5 n 148 178+ (810) 805-658 (633+) BC *
MDG.T108 10 PICE c. 100 ? n 153 274+ (909) 809-657 (636+) BC **
MDG.T03 4 PICE 0 n 381 393+ 1035-655 (643+) BC *
MOTT.T15 MOTT PICE 0 n 152 153+ 809-658 (657+) BC *
MDG.T106 10 PICE c. 145 ? n 92 254+ (916) 771-680 (663+) BC *
MDG.T138 10 PICE 0 n 154 159+ 822-669 (664+) BC **
MDG5-02 10 PICE 0 n 124 124+ - **  Beta 295444 70-79 2580 ± 30 814-592 BC 758 (708) BC

MDG.T43_G 10 PICE c. 71 n 225 298+ (1009) 938-714 (712+) BC *
MDG3-05_G 9 PICE 0 y 341 341 1117-777 BC ****
MDG.T123_G 9 PICE 0 y 296 430+ 1209-914 (780+) BC ***
MDG.T78 9 PICE 0 n 208 220+  1019-812 (800+) BC **
MDG.T04_G 9 PICE 0 y 428 477 1278-851 (802) BC ****
MDG.T05 9 PICE 0 n 237 242+ 1046-810 (805+) BC **
MDG.T64 9 PICE c. 10 n 91 116+ (927) 917-827 (812+) BC **
MDG.T83 9 PICE c. 100 ? n 229 357+ (1178) 1078-850 (822+) BC *
MDG.T70_G 9 PICE 0 n 166 174 999-834 (826+) BC ***
MDG3-07 9 PICE 0 n 73 83+ - **  Beta 295443 81-85 2660 ± 30

MDG3-06 9 PICE 0 n 92 94+ - **  Beta 295442 88-92 2690 ± 30

MDG.T124 9 PICE c. 53 n 210 301+ (1173) 1120-911 (873+) BC *
MOTT.T11 MOTT PICE 0 n 163 167+ 1053-891 (887+) BC *
MDG.T82 9 PICE 0 n 360 391+ 1280-921 (890+) BC *
MDG.T109 4 PICE c. 145 ? n 292 298+ (1379) 1234-943 (937+) BC **
MDG3-02 9 PICE 0 n 206 246+ 1207-1002 (962+) BC **  SacA 22824 150-159 2925 ± 30 1257-1019 BC 1131 (1047) BC

MDG.T113 9 PICE c. 40 ? n 136 180+ (1145) 1105-970 (966+) BC *
MDG.T79_G 9 PICE 0 n 233 282+ 1265-1033 (984+) BC **
MDG.T125 9 PICE c. 35 n 139 174+ (1171) 1136-998+ BC **

 Beta 295445 A: 6-15 A: 2870 ± 30

 Beta 295446   B: 66-75 B: 2910 ± 30

MDG3-01 9 PICE 0 n 249 260+ 1273-1025 (1014+) BC **  SacA 18581 158-165 3040 ± 30 1406-1213 BC 1315 (1216) BC

MDG.T56 9 PICE c. 35 n 96 143+ (1167) 1132-1037 (1025+) BC *
MDG.T84 4 PICE 0 n 193 214+ 1250-1058 (1037+) BC **
MDG3-03 9 PICE c. 100 ? n 180 320+ (1369) 1269-1090 (1050+) BC *
MDG.T67 9 PICE c. 26 n 179 248+ (1297) 1271-1093 (1050+) BC *
MOTT.T14 MOTT PICE c. 65 y 171 251+ (1355) 1290-1120 (1105+) BC ***
MOTT.T09 MOTT PICE 0 n 70 72+ 1231-1162 (1160+) BC *
MOTT.T12_G MOTT PICE c. 40 n 250 315+ (1482) 1442-1193 (1168+) BC **
MDG.T102 5 PICE 0 n 228 231+ 1458-1231 (1228+) BC **
MDG.T114 9 PICE c. 78 n 131 231+ (1460) 1382-1252 (1230+) BC **
MDG.T103 5 PICE c. 68 n 191 266+ (1560) 1492-1302 (1295+) BC *
MDG.T119 10 PICE 0 n 234 234+ 1777-1544+ BC ***
MDG.T117 10 PICE 0 n 166 194+ 1763-1598 (1570+) BC ***
MDG.T118 10 PICE c. 46 n 135 210+ (1779) 1733-1599 (1570+) BC **
MDG5-01_G 11 PICE 0 n 243 243+ 1823-1581+ BC ***  SacA 22829 190-197 3390 ± 30 1756-1611 BC 1687 (1637) BC

MDG.T45 11 PICE 0 y 226 226 1806-1581 BC ****
MDG.T51 5 PICE c. 78 n 186 318+ (1900) 1822-1637 (1583+) BC ***
MDG.T71 5 PICE 0 n 126 126+ 1718-1593+ BC ***
MDG.T99_G 5 PICE 0 n 233 298+ 1892-1660 (1595+) BC **
MDG.T121 11 PICE 0 n 156 195+ 1794-1639 (1600+) BC **
MDG.T86_G 5 PICE 0 n 353 380+ 1985-1633 (1606+) BC **
MDG.T32 11 PICE 0 n 203 222+ 1829-1627 (1608+) BC **
MDG.T120 10 PICE 22 y 165 220 (1829) 1807-1643 (1610) BC ****
MDG.T101_G 5 PICE c. 15 n 164 208+ (1827) 1812-1649 (1620+) BC **  

MDG.T98 5 PICE c. 71 n 199 300+ (1928) 1857-1659 (1629+) BC **
MDG.T96 5 PICE c. 35 n 121 189+ (1830) 1795-1675 (1642+) BC **
MDG.T95_G 5 PICE 0 n 226 243+ 1886-1661 (1644+) BC **
MDG.T34 11 PICE c. 46 n 102 163+ (1808) 1762-1661 (1646+) BC **
MDG.T53_G 5 PICE 0 n 298 317+ 1968-1671 (1652+) BC **
MDG.T47_G 5 PICE 0 y 190 202+ 1856-1667 (1655+) BC ***
MDG.T105 5 PICE 0 n 148 165+ 1835-1688 (1671+) BC *
MDG.T133 5 PICE 146 n 317 487+ (2173) 2027-1711 (1687+) BC *
MDG.T132 5 PICE 14 n 98 134+ (1828) 1814-1717 (1695+) BC **
MDG.T36 5 PICE 0 n 116 117+ 1828-1713 (1712+) BC **

77+MDG5-04 PICE 0 74n10 1044 (1037) BC

890-798 BC ‡

- 1131-978 BC ‡**

824 (813) BC



 Tab. 1. Dendrochronological and radiocarbon results for the Mer de Glace subfossil samples. 
a Sample names including “.T” are detrital tree remains coming from the talus scree. The 

suffix “G” indicates a grouping of several samples within a single tree. b Site indication is 

given for samples embedded-in-till, and for samples for which the layer of origin is accurately 

known or assumed based on robust topographical evidence (bold font). Regarding detrital 

samples for which the layer of origin has not been sampled and could not been identified, 

only the sector is reported (italic font). c PICE: Pinus cembra; ACER: Acer sp.; PCAB: Picea 

abies; LADE: Larix decidua. d “0” means that the pith is present. e Estimated MTL, includes 

PO estimates and outermost rings counting. Please note that results for the MDG.T47_G 

sample are reported as a terminus post quem at 1655+ BC, despite the presence of the waney 

edge. Few outermost rings just before waney edge were not accurately countable, therefore a 

conservative estimate was used, close to the exact death-date. † Qualitative confidence level 

assigned to the dendrochronological death-date estimate: * Trunk / fragment highly eroded. 

Number of lacking outer ring potentially important and/or counting not accurate. ** Altered 

peripheral rings. Unknown number of lacking rings. Good readability of counted rings. 

Consistency of estimates made on different radii. *** Altered peripheral rings. Good 

readability of counted rings. Scattered occurence of bark/waney edge indicating a limited 

number of lacking rings. **** Rings measured or readable up to waney edge with good 

accuracy, exact death-date. ‡ 2 sigma calibration range obtained through the wiggle matching 

of the two radiocarbon dates indicated with the OxCal 4.1 program (Bronk Ramsey et al., 

2001). f Please note, the timescale used for the reported dates include a "year 0". g Dating in 

brackets is the radiocarbon-derived virtual death-date used for the discussion, i.e. the central 

point estimate + the distance to the end of the dendro-series. 

 
 

 

 

 

 

 

 

 

 

Table and Figures captions



Fig. 1. (A) Location of the Mont Blanc Massif (MBM), Lake Bourget (LBo), Lake Bramant 

(LBr) and sites of high resolution Neoglacial glacier chronologies developed in the Alps, LG: 

Lower Grindelwald, GA: Great Aletsch, GO: Gorner, GP: Gepatsch, PA: Pasterze. Red star: 

Main EACC sampling region; white areas: 2003 glacier extent (Paul et al., 2011). (B) Shaded-

relief map of the Mont Blanc massif with present day glacier extent in blue (France, 2009: 

Gardent et al. (2014); Switzerland, 2003: Paul et al. (2011); Italy, 2005: RAVA data; 

Projection UTM 32N). Mer de Glace present and former (late Holocene) tributaries are 

highlighted in red, G: Gl. du Géant, Tc: Gl. du Tacul, L: Gl. de Leschaux, Tl: Gl. de Talèfre. 

Locations 1 to 8 (all glaciers except 3 and 4) are mentioned in the text; approximate location 

of Fig. 2 is delineated. 

 
 

 

Fig. 2. Oblique aerial view of MdG forefield (view SE; 2008 orthophoto) showing the two 

main studied sectors of the right lateral moraine, MOTT and MDG (the latter is divided into 5 

sub-sectors). RC: Rock cliff areas with Pinus cembra stands overlooking the RLM. Moraine 

sampled exposure sites are labelled from 1 to 11 (see Supplementary Materials for a complete 

description of the outcrops). Single wood samples are figured with coloured dots. Little Ice 

Age maximum extent, as 1995 AD and 2011 AD MdG terminus position are highlighted with 

white and black dashed lines, respectively. Horizontal distance between 1995 AD and 2011 

AD frontal positions is ca. 600 m whereas total retreat between LIA maximum and 1995 AD 

amounts to 1.87 km. Late-LIA frontal positions in the main valley floor are not visible 

(bottom left corner). Approximate position of Fig. 4 is shown with dotted line and locations 

cited in text are indicated. 

 

 

 

 

 

 

 

 

 



Fig. 3. Synthesis of dendrochronological and 14C dating of subfossil tree remains from the 

MdG forefield. (A) Embedded-in-till and detrital wood remains released from the RLM. 

Exact tree death-dates (waney edge present, exact counting of outermost rings) are in bold 

font, virtual death-date (no waney edge and/or conservative counting of outermost rings) are 

in regular font. MTL: minimum tree lifespan (includes PO estimate); MRW: mean ring width 

for each chronology. (B) Dry-dead logs fallen from the rock cliff sampled on the surface of 

the RLM crest at BAY site (see Fig. 2 and Fig. S5F). One sample (TRI06c) is from the Trient 

glacier moraine crest – same setting as BAY site (see Fig. 1 for location). Bk: bark present. 

Note that bark is no longer present after ca. 10 yrs of exposure and waney edge after ca. 30 

yrs. (C) Crossdating position of modern avalanched trees from Site 7 and nearby colluvium, 

yielding death-date in fall/winter 1979/1980 AD; series are plotted as raw ring-width data. 

Note the growth pattern of juvenile trees. (D) Main germination and burial phases (green and 

blue shading, respectively). Germination phases are depicted as the mean and one standard 

deviation of considered dates; Intensity is higher with darker frame. Burial phases timing 

relies on the best preserved samples which constrained culmination of the advances (dark blue 

vertical bars). 

 
 
 
 
Fig. 4. Spatial repartition of the dated subfossil woods at MDG sector (view ENE, 2008 

orthophoto). All dated samples are figured, regardless groupings made into single tree nor 

distinction between embedded-in-till and detrital woods. Length of the exposure is 1.3 km 

(see Fig. 2 for location). Glacier flows from right to left. 

 

 

 

Fig. 5. Synthesis of datings from the RLM and correlation between synchronous levels. 

Sample locations are given in terms of depression with respect to the moraine erosion edge 

(upper line). Sample sites numbering is reported (upper circled numbers). Coloured lines are 

isochrones representing glacier margin position at the time of burial. Time of proposed glacier 

advances presented here (bottom panel) take into account both the dating of wood remains 

embedded-in-till and of detrital remains where appropriate (datings in brackets). Site 1 (LIA 

reworked samples) is not shown. Flow direction of the glacier is from right to left. 



 
Fig. 6. Altitudinal variations of MdG for the last 4 ka determined from RLM dated subfossil 

wood layers. Historical variations since 1500 AD are not shown (see Nusbaumer et al., 2007). 

To ensure consistency in the representation of the different advances throughout the record, 

wood layers are related to the mean glacier surface altitude right from the RLM for selected 

reference years (right scale) rather than to the absolute distance to the moraine crest at each 

sampling site (see section 5.1). For each layer altitude, the absence of the glacier is depicted 

by the length of the bar and ranked as: possible absence (light grey shading), probable 

absence (medium grey shading) and certain absence (black) – based on the interpretation of 

the wood remains. Number of samples on which the interpretation is based is reported on the 

bar. Circled numbers refer to the two possible scenarios arising from the interpretation of the 

Site 8 samples (see Supplementary Materials and section 6.5). Altitudinal position of the 

Bronze Age Warm Period samples is speculative (arrows) as only detrital wood remains were 

sampled from this period. The samples from L1/S9 are figured according to the results of the 

wiggle matching of the two radiocarbon dates. LNWP: Late Neolithic Warm Period; BWP: 

Bronze Age Warm Period; IRWP: Late Iron Age/Roman Age Warm Period; MWP: Medieval 

Warm Period. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig. 7. Comparison of the MdG chronology with regional and global glacier records. Vertical 

lines represent maximum-limiting ages for MdG advances derived from the 

dendrochronologically-dated subfossil woods. The dashed lines stand for the late-LIA 

maxima (bold lines; Nussbaumer et al., 2007) and post-LIA advances (thin lines). (A) MdG 

Neoglacial chronology (this study). Note that the MdG LIA chronology from Nussbaumer et 

al (2007) is depicted on the same scale (light tones) albeit it consists of length variations. (B) 

Gepatschferner dendro-based Neoglacial chronology. The “+” means that the glacier likely 

exceeded this position to reach an unknown maximum extent (Nicolussi and Patzelt, 2001). 

(C) Great Aletsch dendro-based Neoglacial chronology (Holzhauser et al., 2005; Holzhauser, 

2009). (D) Sheridan glacier dendro-based Late Holocene chronology (Barclay et al., 2013). 

(E) Scandinavian glaciers Neoglacial variations. ELA reconstruction for Austre Okstindbreen 

(northern Norway; left axis) based on lake sediments (Bakke et al., 2010). The dashed line 

(right axis) figures the integrated record of glacier activity in the upstream catchment of Lake 

Nerfloen (440 km2, western Norway) (Vasskog et al., 2012). (F) Proglacial Lake Bramant 

(Grandes Rousses) clastic sedimentation. Anomalies of K/Ti are depicted up to 800 AD (left 

axis), then anomalies of Ti from 800 AD onwards (right axis). Both are interpreted as proxies 

for Saint Sorlin glacier activity on the selected time periods, respectively, owing to a 

sedimentary source change (Guyard et al., 2013). (G) Detrital events recorded in the Survilly 

peat bog (2235 m a.s.l., Fiz massif; site 4 in Fig. 1B) (David, 2010). (H) Terrigenous input 

into Lake Le Bourget (231 m a.s.l.; LBo, Fig. 1) recorded by variations of titanium content 

(Jacob et al., 2008; Arnaud et al., 2012). Data are smoothed with a 3-point running average. 

(I) Replication of the MdG dated subfossil wood samples. Includes PO estimate and 

radiocarbon-dated samples. Light brown shading represents the addition of BAY site moraine 

crest samples.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig. 8. Comparison of the MdG glacier chronology with main climate forcings and selected 

alpine paleoclimate proxies. (A) MdG Neoglacial chronology (this study). Vertical blue 

shading represent the periods of tree-death (depicted in Fig. 3) interpreted as maximum ages 

for glacier advances. (B) Reconstructed total solar irradiance (TSI) from 10Be measured in ice 

cores (Steinhilber et al., 2009). Bold line is a 31-pt running mean smoothing highlighting the 

multi-centennial trend (original dataset is at 5-yr resolution). (C) NAO reconstruction based 

on lake sediments from southwestern Greenland (Olsen et al., 2012). (D) Volcanic forcing for 

the northern hemisphere derived from the GISP2 sulfate record. The reconstructed volcanic 

signals are displayed as 51-yr running means (Kobashi et al., 2013). Please note that the y 

axis is broken to account for the 12th century AD low values. (E) COMNISPA δ18O record 

which represents the stack of 3 speleothems from the Spannagel cave (2310 m a.s.l., Zillertal, 

western Austria) interpreted as an annual temperature proxy (Vollweiler et al., 2006). (F) 

Maximum latewood density record of subfossil Larix decidua logs from the Höhenbiel bog 

(1960 m a.s.l., Uri, Switzerland) interpreted as a summer (AS) temperature proxy. Series is 

smoothed with a 31-yr binomial low pass filter (Renner, 1982). (G) Reconstructed summer 

(JJA) temperature anomalies with respect to the 1901-2000 AD period based on EACC 

material from the Austrian Alps (Büntgen et al., 2011). Record is smoothed with a 31-yr 

running mean. (H) Replication of the MdG dated subfossil wood samples. Includes PO 

estimate and radiocarbon-dated samples.  
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