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Summary 

Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant 
proportion of aquaculture products are derived from marine protostomes that are commonly referred to as “marine 
invertebrates”. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, 
Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in 

aquatic ecosystems that are exploited by humans. Remarkably, species of corals (Cnidaria) living in non-exploited 
ecosystems also suffer from devastating infectious diseases that display intriguing similarities with those affecting farmed 
animals. Infectious diseases affecting wild and farmed animals that are present in marine environments are predicted to 
increase in the future. This paper summarizes the role of the main pathogens and their interaction with host immunity, 

with a specific focus on antimicrobial peptides (AMPs) and pathogen resistance against AMPs. We also provide a 
detailed review of penaeid shrimp AMPs and their role at the interface between the host and its resident/pathogenic 
microbiota. We also briefly describe the relevance of marine invertebrate AMPs in an applied context. 
 

1. Economic relevance of marine invertebrates 

Oceans and seas cover two-thirds of our planet; provide ecosystem services, such as fishing, aquaculture, carbon 
sequestration, regulation of water quality and nutrient storage; and support numerous recreational activities, all of which 
significantly contribute to employment and economic activity [1]. In 2012, aquaculture provided an unprecedented total 
of 66.6 million tons of seafood, including 175 species of “marine invertebrates”, mainly crustaceans (Ecdysozosoa, 

Arthropoda) and molluscs (Lophotrochozoa, Mollusca) [2]. Farmed crustaceans accounted for 9.7% (6.4 million tons) of 
the seafood production by volume, but 22.4% (US$30.9 billion) by value. Shrimp is currently the largest single 
commodity in terms of value, with the main cultivated species being Litopenaeus vannamei and Penaeus monodon. In 
2012, molluscs, such as oysters, mussels, scallops and clams, accounted for 20.5% (13.7 million tons) of seafood 

production. Molluscs are essentially produced for food, but they also contributed to 22,400 tons of non-food products, 
such as pearls and seashells for ornamental and decorative uses. However, disease outbreaks have heavily impacted this 
intensifying production over the past few years, and emerging infectious diseases are predicted to increase in the future in 
both wild and farmed animals as a result of climate change [3]. 
 

2. Infectious diseases affecting marine invertebrates 

The health status of marine invertebrates is intimately related to the microbial communities that are present in the aquatic 
environment, which include both commensals and opportunistic pathogens. While microorganisms hosted by 
invertebrates help maintain homeostasis, under stressful conditions, some can become highly virulent and severely 
damage their host [4]. In coastal environments and lagoons, marine invertebrates are exposed to multiple abiotic stresses, 
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which can be of anthropogenic origin. Thermal stress, high density [5], and nutrient rich environments [6] are factors 
favouring infectious diseases in the wild as well as in intensive farming. Remarkably, while marine invertebrates are 
incredibly diverse in terms of phylogeny and ecological niche, disease patterns are repeatedly found across species. These 
diseases include temperature-dependent vibrioses [7,8] and polymicrobial diseases [9,10]. Differences are observed in the 
susceptibility of the animals, from larvae to juveniles and adults, and in the diversity of the pathogens (vibrios, viruses, 
etc.) that affect each developmental stage. Relevant examples of infectious diseases are presented below within three 
different phyla of marine invertebrates (Arthropoda, Mollusca and Cnidaria) that are directly/indirectly and 
intensively/extensively exploited by humans in a diversity of ecosystems.  

Arthropods. Diseases in marine arthropods are dominated by those described in penaeid shrimp aquaculture, which is 
characterized by intensive cultural practices favouring disease development. Twenty viruses are known to infect penaeid 
shrimp. Two types of viruses cause major viral diseases, namely, DNA viruses, such as the monodon baculovirus (MBV) 
[11], the white-spot syndrome virus (WSSV) [12], the hepatopancreatic parvovirus (HPV) and the infectious hypodermal 

and hematopoietic virus (IHHNV) [13], and RNA viruses, such as the yellow-head virus (YHV), the Taura syndrome 
virus (TSV) [14] and the infectious myonecrosis virus (IMNV) [15]. WSSV is the most severe threat for farmed adult 
shrimp worldwide and is one of the best studied crustacean viruses [16]. Bacterial infections, particularly vibrioses, are a 
major concern for the production of shrimp larvae and juveniles. V. harveyi, and V. vulnificus are associated with larvae 

mortality [17], whereas V. damsela, V. alginolyticus, V. parahaemolyticus, V. penaeicida and V. nichripulchritudo cause 
disease outbreaks in shrimp nurseries or grow-out ponds [17]. In 2010, a new shrimp disease that affects postlarvae has 
emerged from Asia [18]. This acute hepatopancreatic necrosis disease (AHPND) is caused by a highly virulent strain of 
V. parahaemolyticus, which has acquired a virulence plasmid encoding a pore forming bacterial toxin that is as toxic as 

the insecticidal Bacillus Cry toxin [18]. 

Molluscs from the shellfish industry are affected by a variety of infectious diseases whose importance largely depends on 
the degree of exploitation and ecosystem health. The most significant epizootic events are caused by bacteria from the 
Vibrio genus [19,20], viruses from the Malacoherpesviridae family [21] and protozoans from the Perkinsus, Marteilia, 

Bonamia and Haplosporidium genera [17]. Some of these microorganisms can affect a broad range of mollusc species at 
all life stages around the world, while others are highly species-specific. The epizootic events that they cause are 
frequently devastating. Over the past few decades, abnormal mortalities of juvenile C. gigas oysters have affected the US, 
Japan, Australia and Western Europe. Those mortalities of complex aetiology are due to a temperature-dependent 

polymicrobial disease that involves pathogenic Vibrio strains of the Splendidus clade and the ostreid herpes virus OsHV-
1 µvar [9,17,22]. Vibrios also cause diseases at other oyster developmental stages. Vibrio aestuarianus is responsible for 
mortality of adult oysters [23], whereas V. tubiashi causes a necrotic disease in hatcheries [24].  

Cnidarians, which live in coastal marine systems and lagoons, also suffer from infectious diseases. Among the known 
pathogens, all of the classical agents (Eubacteria, cyanobacteria, fungi and viruses) have been described [25,26]. Most 
diseases were observed in corals. One of the most famous coral diseases is type I White Band Disease (WBD). Described 
for the first time in the 1970s, WBD caused the loss of up to 95% of the Acroporid found throughout the great Caribbean 
area [27]. However, as with many coral diseases, the causative agents of type I WBD are unknown and do not fully 

satisfy the Koch postulate or correspond to microbial consortia [25]. Another well-known example is Black Band 
Disease, which is caused by cyanobacteria assemblages and other unidentified heterotrophic microbes [10,28]. Many of 
the known coral pathogens belong to the Vibrio genus. While V. harveyi/charcariae is the causative agent of type II 
WBD and other "White Syndroms" [29,30], V. shiloi and V. coralliilyticus are responsible for bacteria-induced bleaching 

in corals and tissue lysis in several other cnidarians [43–46]. 
 

3. Antimicrobial peptides (AMPs) in marine invertebrate immunity, a focus on 
penaeid shrimp.  

The economic consequences of infectious diseases affecting farmed bivalve molluscs and arthropods (crustaceans) have 
motivated a substantial research effort, which has considerably enriched our knowledge of the immune system of 
protostomes. Similarly, coral bleaching events are a threat for society and have inspired studies on the interaction of the 

immune system of cnidarians with its resident microbiota and pathogens. To date, AMPs are among the best described 
immune effectors of marine invertebrates. 
 

3.1. Diversity and specificity of AMPs in the immune response of marine invertebrates 

Similar to AMPs from other phyla [36], most of the AMPs characterized in marine arthropods, including molluscs and 
cnidarians, are cationic and hydrophobic and target essential components of microbial cell walls and membranes, which 
determines their spectrum of activity [37]. A high diversity of mechanisms of action has been reported for AMPs from 

marine invertebrates and is described in detail for some families. For example, mollusc defensins, which are essentially 
active against Gram-positive bacteria, bind to lipid II, the precursor of peptidoglycan [38]. Arthropod anti-
lipopolysaccharide factors (ALFs) and mollusc bactericidal/permeability-increasing protein (BPI), which are essentially 
active against Gram-negative bacteria, bind to lipopolysaccharide (LPS) [39–41]. Finally, crustacean PvHCt, which is 
strictly antifungal, permeabilizes the fungal plasma membrane [42].  

Page 3 of 13

http://mc.manuscriptcentral.com/issue-ptrsb

Submitted to Phil. Trans. R. Soc. B - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

Those AMP families have been generated through different patterns of diversification (gene duplication, gene copy 
number variation, recombination and allelic polymorphisms) [37] due to  multiple evolutionary drivers and have given 
rise to functional divergence. Some families appear to have evolved within specific phyla or species [43], whereas others 
are found in a diversity of phyla [44]. Most AMP families from molluscs, including defensins, big-defensins and BPI (for 
recent review see [45]), are also found in other protostomes (Ecdysozoa) and/or in deuterostomes (Mammalia). In 
contrast, in cnidarians, taxonomically restricted AMPs have been described, such as arminins, which are among the most 
highly expressed genes in Hydra [46], or damicornin in the coral Pocillopora damicornis [47]. In marine arthropods, the 
pioneering studies in Chelicerata (horseshoe crabs) have identified both taxonomically restricted (tachyplesins, ALFs) 

and more widely distributed AMPs (big defensins) [40,48,49]. Finally, in decapod crustaceans, highly diverse AMPs 
were characterized that are specific to penaeid shrimp (penaeidins, stylicins), crustaceans (crustins) or arthropods (ALFs) 
[50,51]. The best known AMPs from crustaceans were characterized in penaeid shrimp, and many of them are composed 
of structural domains that have distinct biological functions [50,52]. A description of the major AMP families in shrimp is 

provided below. Unlike in insects, there is still little knowledge about the molecular regulation of AMPs in marine 

invertebrates. In shrimp, which is one of the best described organisms, some AMP families are controlled by NF-κB 
signalling pathways. Alternatively, mature AMPs can be stored in immune cells and are released upon challenge (see 
below). 

 

3.2. Gene-encoded AMPs from penaeid shrimp 

3.2.1. Penaeidins 

Penaeidins were the first AMPs characterized in shrimp [53]. Those peptides, which are restricted to species of penaeid 
shrimp, are abundant in the circulating immune cells (the haemocytes) of L. vannamei [53]. They are cationic peptides 
(4.7-7.2 kDa; pI ~9) composed of an unconstrained N-terminal proline/arginine-rich domain followed by a C-terminal 

domain that contains an amphipathic helix and two coils stabilized by three disulphide bonds (Table 1) [53,54]. 
Penaeidins can carry post-translational modifications, such as a N-terminal pyroglutamic acid and an amidated C-
terminus. AMPs from this diverse family fall into 4 subgroups (PEN1/2, PEN3, PEN4 and PEN5, Table 1), whose 
specific sequence signature and biochemical features have been used to standardize their nomenclature after the name of 

the shrimp species and the penaeidin subgroup [55]. Each subgroup is encoded by distinct genomic sequences [55,56]. 
While the PEN3 gene is widely distributed among species of penaeid shrimp, PEN2, PEN4 and PEN5 genes are restricted 
to a given species of shrimp [57]. PEN genes are highly and constitutively expressed in haemocytes of healthy individuals 
[58] [59]. Penaeidins, which are stored in haemocyte granules, are released in response to microbial challenge [59]. 

Penaeidin sequence diversity translates into diverse biological activities [60]. Most penaeidins from subgroups PEN1/2, 
PEN3 and PEN4 are active against Gram-positive bacteria and filamentous fungi, but not Gram-negative bacteria. In 
contrast, a PEN5 member (Fenchi PEN5) from Fenneropenaeus chinensis is active against Gram-negative bacteria [56]. 
Penmon PEN5 from P. monodon also participates in the shrimp antiviral defence against WSSV [61]. Although little is 
known about the mechanism of action of penaeidins, the function of the proline/arginine-rich domain was investigated in 
different penaeidins. This domain was devoid of antimicrobial activity in PEN3 [59], but possessed both antifungal and 
antibacterial activity in PEN4 [62]. Interestingly, this domain was also reported to behave as a cytokine by attracting 
haemocytes towards sites of injury [63]. In addition, the cysteine-rich domain of PEN3 was proposed to mediate 

penaeidin antifungal activity by binding to chitin [59]. The ability of penaeidins to bind to the chitin exoskeleton suggests 
that penaeidins could play a role in wound healing and/or moulting in shrimp [52]. 

 
3.2.2. Anti-lipopolysaccharide factors (ALFs) 

ALFs form a diverse family of AMPs that are composed of both cationic and anionic polypeptides. First identified in 
horseshoe crabs and later in penaeid shrimps [64] and other crustaceans [57], ALFs were named “anti-LPS factors” for 
their immunomodulatory function. ALFs are able to inhibit the LPS-mediated activation of the limulid coagulation 
system [40,41]. ALFs contain a hydrophobic N-terminal region with two conserved cysteine residues. The disulphide-

bond delimits a β-hairpin structure that is referred to as the LPS-binding domain [65]. Most ALFs bind to Lipid A from 
Gram-negative bacteria, but they can also interact with lipoteichoic acid (LTA) from Gram-positive bacteria [66] and β-
glucan from fungi [67]. The known 3D-structures of ALFs consist of three α-helices (one at the N-terminus and two at the 
C-terminus) packed against a four-stranded β-sheet (Table 1) [65,68]. 

In shrimp, ALFs form a large and diverse family of five groups, namely, ALF-A (anionic and cationic polypeptides of 
11.4-11.5 kDa), ALF-B (highly cationic polypeptides of 10.6-11.2 kDa), ALF-C (cationic polypeptides of 11-11.3 kDa), 
ALF-D (highly anionic polypeptides of 10.7-10.8 kDa) and ALF-E (anionic and cationic polypeptides of 11.4-12.5 kDa) 
(Table 1) [69,70]. ALFs are encoded by separate genes and are transcribed at basal levels in healthy individuals [69]. In 

L. vannamei, ALF genes are differentially expressed in response to a fungal infection. Although ALF-A gene expression 
remains stable, the other ALF genes are inducible [69]. While ALFs can be detected in diverse shrimp tissues, results for 
ALFPm3 strongly suggest that the expression of ALF-B is restricted to haemocytes, which infiltrate shrimp tissues [66]. 
ALFs are potent and broad spectrum AMPs. For example, cationic Group B ALFs are active against Gram-positive, 

Gram-negative bacteria, yeast, filamentous fungi and some enveloped viruses [50]. In contrast, anionic Group D ALFs 
have impaired LPS-binding properties and display very low antimicrobial activity in vitro [69]. 
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3.2.3. Crustins 

Crustins are antimicrobial polypeptides (6-22 kDa; pI 4-8) containing a Whey Acidic Protein (WAP) domain [71]. This 
WAP domain, which is also found in some mammalian proteins, supports different biological functions, including 
antiprotease activities [72]. Crustins are composed of four members (Type I to IV) that are widely distributed across 
crustaceans [71], which differ by their N-terminal sequence. While the sequence of Type I crustins begins with a 
cysteine-rich domain, Type II crustins (subtypes IIa and IIb) harbour a glycine-rich hydrophobic domain at the N-
terminal position ahead of the cysteine-rich domain that is also found in Type I crustins (Table 1). Comparatively, Type 
III crustins can contain (or not) a short proline/arginine-domain at the N-terminus, whereas Type IV crustins are 

composed of two WAP domains, but do not harbour any specific N-terminal sequence (Table 1) [71]. Data on crustinPm1 
strongly suggest that crustins are mainly expressed by haemocytes [73]. 
The diversity of crustin sequences supports diverse biological functions. While Type I and type II crustins are mainly 
antimicrobial, their spectrum of activity varies with the crustin type/sub-type. For instance, in P. monodon, a Type IIa 

crustin is essentially active against Gram-positive bacteria, while Type IIb crustins are active against both Gram-positive 
and Gram-negative bacteria [73,74]. Interestingly, Type III and Type IV crustins show antimicrobial and/or antiprotease 
activity [71], whereas Type III crustins lacking the N-terminal proline/arginine-domain and Type IV crustins from shrimp 
[75,76] only have antiprotease activity [71]. Type IV crustins from crabs exhibit both antimicrobial and antiprotease 

activities [76,77].  
 

3.2.4. Stylicins 

Stylicins are anionic (pI 5) multi-domain peptides of 8.9 kDa that are composed of a N-terminal proline/arginine-rich 

domain followed by a C-terminal domain containing 13 cysteine residues (Table 1) [78]. The recombinant Ls-Stylicin-1 
(from Litopenaeus stylirostris) is active against the filamentous fungus Fusarium oxysporum, but is not antibacterial. As 
observed for Group B ALFs, Ls-Stylicin-1 shows potent LPS-binding activity and was also able to agglutinate Gram-
negative bacteria in vitro [78]. 

 

3.3. Shrimp AMPs encrypted in multifunctional proteins 

 
3.3.1. Hemocyanin-derived fragments 

In addition to gene encoded AMPs, diverse AMPs from crustaceans are encrypted in large proteins carrying non-immune 
functions. Haemocyanins are respiratory proteins found in arthropods. Interestingly, crustacean haemocyanins release 
histidine-rich antimicrobial peptides in response to microbial challenge [79,80]. In penaeid shrimp, strictly antifungal 
peptides are released from the C-terminus of haemocyanins [79]. Recently, the 3D-structure of the antifungal peptide 
PvHCt from L. vannamei was determined, and its mechanism of action was investigated. This histidine-rich AMP was 
shown to selectively bind to the fungal cell wall and permeabilize fungal membranes by adopting an amphipathic alpha-
helical structure. Insertion of PvHCt into the plasma membrane disrupts its integrity as a permeability barrier, leading to a 
disruption of internal homeostasis and the death of the fungal pathogen [42]. 

 
3.3.2. Histones and derived fragments 

Histones are essential protein components of the chromatin architecture. The antimicrobial activity of histones was first 
described in deuterostomes (mammalians) [81]. Histones and derived fragments are active against Gram-negative and 

Gram-positive bacteria, fungi and viruses with various modes of action, including the permeabilization of bacterial cell 
membrane and binding to bacterial DNA and/or RNA [82]. The role of histones in shrimp defence was first determined in 
L. vannamei [83]. The extracellular release of histones is associated with a defence reaction named ETosis, in which 
phagocytes release histones associated with extracellular traps (ETs) of DNA that entangle and eventually kill microbes 
[84]. ETs have now been described in deuterostomes [85] and protostomes, including species of Ecdysozoa (insects [86], 
crustaceans [87]) and Lophotrochozoa (molluscs [88]). This process is triggered by infection and/or tissue damage. ROS 
production is a signal that triggers ET formation in mammals [89] and lophotrochozoans [88]. In shrimp, haemocytes also 
release ETs in response to ROS inducers [87]. It will be of great interest to identify the haemocyte types that are involved 

in ETosis and determine whether the AMPs that are stored in haemocytes, like penaeidins, contribute to the antimicrobial 
activity of shrimp ETs. 
 

4. AMPs in marine invertebrate immune-microbiota interactions 
Marine invertebrates host a broad diversity of microorganisms in their tissues and haemolymph, including vibrios [4], 

which have the potential to become pathogenic and cause severe disease outbreaks (see section 2). Some adopt 
intracellular stages and are able to survive inside phagocytes [90,91]. As illustrated in section 3, haemolymph, phagocytes 
and epithelial tissues are rich in AMPs. We are therefore facing a puzzling paradox, that is, microorganisms have evolved 
the ability to colonize immune cells/tissues that produce high local concentrations of AMPs. Although still incompletely 
understood, the recent literature sheds some light on the role of AMPs in the control of microbiota (including pathogens) 
and the mechanisms by which microorganisms avoid the complex chemical defences of their hosts. 
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4.1. Essential role of AMPs in the control of the microbiota  
The application of gene silencing to non-model organisms has opened the way for in vivo functional studies that provide a 
more exhaustive view on the role of AMPs at the interface between hosts and microorganisms (Table 1). RNA 
interference (RNAi) confirmed the essential role of AMPs in controlling infections, as demonstrated for Type I crustins 
from Marsupenaeus japonicus, which participate in bacterial clearance in shrimp haemolymph [92,93]. It also confirmed 
the functional divergence of AMP variants. Indeed, in vivo, LvALF1 (Group A ALF) protected L. vannamei against V. 

penaeicida and F. oxysporum, but not WSSV [94], whereas ALFPm6 (Group C ALF) in P. monodon protected against 
both V. harveyi and WSSV [95]. However gene silencing also showed a more complex role of AMPs in the immune 

response of shrimp. Indeed, Type II crustins, which are not active against Gram-negative bacteria in vitro [50], participate 
in the resistance of L. vannamei and M. japonicus to Gram-negative V. penaeicida in vivo [96,97]. 
In addition, through the use of gene silencing, AMPs were shown to orchestrate a key interface with the resident 
microbiota in marine invertebrates. In arthropods (shrimp), ALFs controlled shrimp-associated microbial communities 

[95,98]. Indeed, silencing of ALFPm3 (Group B ALF) in P. monodon caused a rapid propagation of bacteria, resulting in 
the death of the animals [95]. In freshwater cnidarians (Hydra), species-specific AMPs called arminins were found to 
define host-species-specific bacterial associations [99]. With those findings, host-specific AMPs were proposed to have 
evolved in early branching metazoans because of the need to control the resident beneficial microbes and not because of 

invasive pathogens [100]. 
Novel functions (non-antimicrobial) of AMPs were also discovered through gene silencing. Thus, silencing of PEN3 
from the shrimp P. monodon resulted in a decrease in the β-integrin-dependent adhesion properties of shrimp haemocytes, 
revealing a previously unknown immunomodulatory function for penaeidins [101]. Gene silencing techniques applied to 

anionic AMPs, such as Group D ALFs [69] and stylicins [78], which show poor antimicrobial activity in vitro, should 
enable the characterization of their role in shrimp defence. 

 

4.2. Responses of pathogens to AMPs 

4.2.1. Immune suppression of AMPs by pathogens  

Among strategies to escape the immune response, the suppression of AMP expression was shown in different phyla of 
marine invertebrates, including arthropods and cnidarians. In the shrimp L. vannamei, an infection by the fungal pathogen 
Fusarium solani dramatically repressed the expression of penaeidins, stylicins and Type II crustin [102]. Similarly, 

immune suppression of AMPs was reported in the coral P. damicornis, in which V. coralliilyticus exhibits temperature-
dependent virulence, resulting in coral bleaching above 24 °C and tissue lysis above 25 °C [7]. In its non-virulent state 
(below 24 °C), V. coralliilyticus induces the transcription of several coral immune genes [103] and the release of 
damicornin in coral mucus [47]. In contrast, in its virulent state, vibrios penetrating into coral tissues [104] induce a 
strong transient expression followed by a dramatic repression of damicornin transcription [47]. To date, the molecular 
mechanisms underlying the immune suppression of AMPs remains to be discovered. 

 
4.2.2. Resistance to AMPs in vibrios  

The membranes of microorganisms are an important interface with host AMPs (see section 3). Consequently, in vibrios, 
many of the most important mechanisms of AMP-resistance rely on outer membrane remodelling. Another important 
mechanism of resistance is the active efflux of AMPs from the bacterial cell. Those mechanisms have been recently 
reviewed in detail [105]. The most significant are those in which the minimum inhibitory concentrations (MICs) increase 

by several fold and are summarized below. 

Membrane charge alteration. As electrostatic interactions often initiate the binding of cationic AMPs to bacterial 
membranes, bacteria colonizing metazoan hosts have evolved strategies to lower the net negative charge of cell surface 
molecules; in Gram-negative bacteria, such modifications are often observed on LPS, the major constituent of their outer 
membrane [106,107]. Vibrios, including human pathogens, live in close association with marine invertebrates [108], 
which in turn may have selected AMP-resistant phenotypes among vibrios. A structural modification of LPS was recently 
found to be responsible for the different AMP-resistant phenotypes observed in V. cholerae. Indeed, the Lipid A structure 
(the anionic membrane anchor of LPS) of V. cholerae O1 and O139 [109] contains a hydroxylated secondary acyl chain 

that is also found in the squid symbiont V. fischeri [100]. This structure plays an important role in the resistance to AMPs 
[109,110], as it can be substituted by di-Glycine residues that lower the negative charge of the whole molecule [111].  

Release of outer membrane vesicles. Upon outer membrane stress, such as that created by AMPs, bacteria can use the 

alternate σE factor to promote the expression of factors that help preserve and/or restore cell envelope integrity. The 

release of outer membrane vesicles (OMVs) is a σE-dependent mechanism [112], whose role in AMP resistance has been 
recently shown in vibrios. Vibrios, including the oyster pathogen V. tasmaniensis LGP32, were shown to release OMV 
protection against membrane-active AMPs [113,114]. Interestingly, OMV release was triggered by oyster plasma, 

suggesting, as shown in E. coli [115], that the membrane-active agents that are present in oyster plasma can trigger OMV 
release in vibrios. While the major protective effect of OMVs against AMPs has now been shown in two vibrio species 
and in E. coli [116], it is still unknown whether this effect results from a membranous shield-like effect in which OMVs 
surround vibrios and trap membrane-active AMPs, thereby preventing their interaction with the membranes of the 

bacterial cell, or a membrane renewal mechanism eliminating AMP-damaged membranes to maintain membrane 

integrity. The σE-dependent induction of OMV release tends to support the second hypothesis.  
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Active efflux of AMPs. Once AMPs have breached the membrane barriers of bacteria and reached the cytoplasmic space, 
they can be expelled into the extracellular milieu by diverse efflux pumps. Pumps of the resistance-nodulation-cell 
division superfamily (RND) contribute to AMP-resistance in vibrios. However, among the 6 RND efflux pumps of V. 

cholerae [117], only VexAB-TolC is required for AMP resistance in vitro [118,119]. The VexAB-TolC pump is 
structurally and functionally similar to the E. coli and Salmonella enterica AcrAB-TolC pump [120,121] and the 
Pseudomonas aeruginosa MexAB-OprM systems [122]. VexAB is also the main efflux pump that is involved in the 
resistance to bile acids, detergents, antibiotics, and PmB [119,123]. To date, among vibrios, V. cholerae remains the only 
species in which AMP-resistance was mediated by an RND efflux system. 

 

5. Marine invertebrate AMPs in an applied context 

5.1 AMPs as therapeutic drugs 

Since their first discovery in the 1980s, AMPs have been considered to be promising candidates for therapeutic uses in 
humans, animals and plant health. However, only a few AMPs have reached phases of clinical and preclinical pipelines 

[124,125]. AMPs with potential interest for biopharmaceutical companies have been isolated from marine invertebrates. 
Some AMPs, such as mollusc defensins, have very low MICs in the nanomolar range against Gram-positive bacteria [38]. 
Their fungal homologue, plectasin, is considered to be a major candidate for therapeutic use [126]. Importantly, AMPs 
are currently being used for drug development due to their activity as immune modulators, which gives them clinical 
potential beyond the treatment of antibiotic-resistant strains [127]. Among AMPs from marine invertebrates, ALF-
derived peptides have been shown to modulate the inflammatory response in murine macrophage cell lines [128] and 
display antitumor activity against HeLa cells through the alteration of the cell membrane [129]. Those novel activities 
may open the way to future drug developments.  

 
5.2 AMPs in aquaculture 

Disease prevention in marine invertebrate aquaculture has been traditionally based on the control of pathogens or the 
selection of animals that are resistant to diseases. AMPs of marine invertebrates have been considered for both 

applications. 

AMPs in the control of pathogens in aquaculture. In the context of intensifying aquaculture, antibiotics have been used 
for disease prevention and management, which has resulted in increased bacterial resistance in the environment, and 
favoured the emergence of resistant strains of major human pathogens [130]. If AMPs are proposed as an alternative to 
the use of antibiotics, which should be reduced or avoided in aquaculture (FAO/OIE/WHO), there is a risk of promoting 
the emergence of AMP-resistant strains (see section 4), and this resistance can readily be achieved experimentally [131]. 
However, AMPs present some important advantages over antibiotics, including the following: (i) they are much less 
stable in the environment; (ii) they often combine multiple mechanisms of action, e.g., they can both disrupt bacterial 

membranes and inhibit metabolic pathways; and (iii) they do not increase bacterial mutation rates [132]. However, most 
of all, it is now recognized that the antimicrobial activity of AMPs largely relies on their immune regulatory properties, 
including the recruitment and differentiation of immune cells [133], against which microorganisms cannot evolve simple 
mechanisms of resistance. The finding that AMPs are not simple antimicrobials but are complex orchestrators of host 

defences has opened new perspectives to combat bacterial infections. AMPs from marine invertebrates have appeared to 
be attractive candidates to reduce the impact of diseases in closed aquaculture systems that have a low impact on the 
environment [17]. However, only rare applications have been reported. AMPs have been recently applied in the 
Polynesian pearl industry [134]. For example, tachyplesin was combined with exopolysaccharides as filming agents 

instead of the antibiotics that are traditionally used in the grafting process to reduce oyster post-operative mortality and 
increase pearl quality. The result of this alternative process was similar to that of commercial nuclei that were treated with 
antibiotics [135]. To date, the use of AMPs as immune modulators has not been reported in aquaculture. 

AMPs as markers for survival capacity in shrimp. AMPs control homeostasis in marine invertebrates and maintain 

individuals in a healthy state (see section 4). Inspired by studies in humans, which have investigated the associations 
between the copy number of AMP encoding genes and susceptibility to diseases [136,137], signatures of AMP expression 
have been studied in marine invertebrates that are susceptible or resistant to infectious diseases. Thus, in the shrimp L. 

stylirostris, the basal expression of AMP-encoding genes (PEN2 and PEN3, ALF-D, Type II crustin and lysozyme) has 

been correlated with the capacity of the shrimp to circumvent V. penaeicida infections. As a consequence, signatures of 
AMP expression have been proposed as original molecular markers for selection programs that are dedicated to shrimp 
resistance to bacterial infections [138].  
 

6. Conclusion 

Based on our current knowledge, there is probably not a general scheme but a diversity of roles for AMPs in the 
homeostasis of “marine invertebrates”. Some AMP families are highly abundant in host cells and tissues, whereas others 
are expressed at levels below inhibitory concentrations. Although the antimicrobial activity of AMPs has been the main 
focus of research, the immune regulatory properties of AMPs in the defence of marine protostomes and cnidarians now 
deserve a much greater research effort. In addition, some AMPs appear to have evolved within specific phyla or species, 
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whereas others evolved from a common ancestor and are widespread in the tree of life. The inspiring example of 
freshwater cnidarians prompts us to investigate how specific AMP repertoires may have shaped the host-specific 
microbiota formation of stable holobionts and compare those examples to other metazoan species with less specific AMP 
repertoires and more versatile microbiota. This research effort is now needed to obtain a more integrated view of the role 
of AMPs in symbiotic interactions that range from mutualistic to pathogenic to develop a better understanding of the role 
of AMPs in protostome and cnidarian health and disease. 
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Table 1: Principal families of AMPs in penaeid shrimp. 

 

AMP 
Varia

nt 

MW in 

kDa 

(charge) 

Functions Structural domains 3D structure 

P
e

n
a

e
id

in
s

 

PEN2 
4.71-6.12 

(cationic) 

anti-Gram-positive activities 

antifungal activities 

antitumor activity 

 

 
 

Litvan PEN3 [PDB: 1UEO] 

 

PEN3 
5.58-7.24 

(cationic) 

anti-Gram-positive activities 

antifungal activities 

chitin-binding properties 

β-integrin-mediated cytokine 

property 

PEN4 
5.23-5.37 

(cationic) 

anti-Gram-positive activities 

antifungal activities 

PEN5 
6.42-6.45 

(cationic) 

antibacterial and antifungal 

activities 

antiviral defense 

A
L

F
s

 

ALF-A 

11.4-11.5 

(anionic 

and 

cationic) 

antibacterial and antifungal 

defenses 

 
 

 

ALFPm3 [PDB: 2JOB] 

 

ALF-B 
10.6-11.2 

(cationic) 

antibacterial and antifungal 

activities 

antiviral activity against human 

viruses 

LPS- and LTA-binding activities 

inhibition of viral propagation 

control of hemolymph microbiota 

ALF-C 
11-11.3 

(cationic) 

antibacterial and antiviral defenses 

LPS neutralizing activity 

control of hemolymph microbiota 

ALF-D 
10.7-10.8 

(anionic) 
not determined 

ALF-E 

11.4-12.5 

(anionic 

and 

cationic) 

bacterial clearance 

antibacterial defense 

C
r

u
st

in
s 

Type I 

9.34-

17.79 

(anionic 

and 

cationic) 

anti-Gram-negative activity  

bacterial-binding activity 

bacterial clearance 

hemocyte phagocytosis 

antiprotease activity 

 

not determined 

Type 

II 

11.22-

22.45 

(cationic) 

anti-Gram-positive activity 

LPS- and LTA-binding activities 

inhibition of viral propagation 

bacterial agglutination activity 

antibacterial defense 

 

Type 

III 

5.96-7.40 

(cationic) 

anti-Gram-positive activity 

bacterial-binding activity 

antiprotease activity  

Type 

IV 

10.93-

11.14 

(cationic) 

bacterial-binding activity 

antiprotease activity 
 

S
ty

li
c

in
s

 

I 
8.9 

(anionic) 

antifungal activity 

LPS-binding activity 

bacterial agglutination activity 

 

not determined 

II not determined 
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