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ABSTRACT	26	

The	 interactions	between	bacteria	and	phytoplankton	 regulate	many	 important	27	

biogeochemical	 reactions	 in	 the	 marine	 environment,	 including	 those	 in	 the	 global	28	

carbon,	nitrogen	and	sulfur	 cycles.	At	 the	microscopic	 level,	 it	 is	now	well	 established	29	

that	 important	 consortia	 of	 bacteria	 colonize	 the	 phycosphere,	 the	 immediate	30	

environment	of	phytoplankton	cells.	In	this	microscale	environment,	abundant	bacterial	31	

cells	 are	 organized	 in	 a	 structured	 biofilm	 and	 exchange	 information	 through	 the	32	

diffusion	 of	 small	 molecules	 called	 semiochemicals.	 Among	 these	 processes,	 quorum	33	

sensing	 plays	 a	 particular	 role	 as,	 when	 a	 sufficient	 abundance	 of	 cells	 is	 reached,	 it	34	

allows	 bacteria	 to	 coordinate	 their	 gene	 expression	 and	 physiology	 at	 the	 population	35	

level.	 By	 contrast,	 quorum	 quenching	 mechanisms	 are	 employed	 by	 many	 different	36	

types	of	microorganisms	to	limit	the	coordination	of	antagonistic	bacteria.	This	review	37	

synthesizes	quorum	sensing	and	quorum	quenching	mechanisms	evidenced	 to	date	 in	38	

the	 phycosphere	 of	 phytoplankton,	 emphasizing	 the	 implications	 that	 these	 signaling	39	

systems	 have	 for	 the	 regulation	 of	 bacterial	 communities	 and	 their	 activities.	 The	40	

diversity	of	 chemical	 compounds	 involved	 in	 these	processes	 is	 examined.	We	 further	41	

review	the	bacterial	functions	regulated	in	the	phycosphere	by	quorum	sensing,	which	42	

includes	 biofilm	 formation,	 nutrient	 acquisition	 and	 emission	 of	 algaecides.	 Quorum	43	

quenching	 compounds,	 their	 function	 in	 the	 phycosphere	 and	 their	 potential	44	

biotechnological	 applications	 are	 also	 discussed.	 Overall,	 the	 current	 state	 of	 the	 art	45	

demonstrates	 quorum	 sensing	 and	 quorum	 quenching	 regulate	 a	 balance	 between	 a	46	

symbiotic	and	a	parasitic	way	of	life	between	bacteria	and	their	phytoplankton	host.		47	

	48	

	49	

	50	
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REVIEW	51	

1.	Definition	of	phycosphere	of	phytoplankton	52	

The	term	“phycosphere”,	was	first	used	in	the	70’s	(Bell	and	Mitchell	1972)	to	describe	53	

the	immediate	region	surrounding	an	algal	cell,	chain	or	colony.	It	describes	a	microbial	54	

habitat	 deeply	 shaped	 by	 the	 alga.	 This	 microenvironment	 is	 composed	 of	 bacteria	55	

measuring	 between	 0.2	 and	 2μm,	 around	 algae	 varying	 in	 between	 2	 and	 200μm	56	

(Sieburth	et	al.	1978).	The	phycosphere	supports	bacteria	in	higher	concentrations	than	57	

in	the	water	column.	For	example,	the	concentration	of	8.2×108	to	2.6×1011	bacteria	ml-1	58	

reported	to	surround	the	alga	Trichodesmium	(Paerl	1982;	Sheridan	et	al.	2002)	is	much	59	

higher	 than	 the	 average	 concentration	 of	 5–6	 ×105	 cells	 ml-1	 found	 in	 the	 seawater.	60	

Similarly,	 107–108	 culturable	 bacterial	 cells	 have	 been	 reported	 per	 gram	 of	61	

Botryococcus	 braunii,	 a	 green	 microalga	 (Rivas	 et	 al.	 2010).	 Several	 studies	 have	62	

revealed	that	the	phycosphere	bacterial	communities	from	different	phytoplankton	cells	63	

are	 complex	 and	 taxonomically	 diverse	 (Delong	 et	 al.	 1993;	 Fandino	 et	 al.	 2001;	64	

Hasegawa	 et	 al.	 2007;	 Rooney-Varga	 et	 al.	 2005;	 Sapp	 et	 al.	 2007;	 Tuomainen	 et	 al.	65	

2006).	 In	 addition,	 this	 microscale	 environment	 is	 regulated	 by	 the	 release	 of	66	

extracellular	 products	 by	 the	 algae,	 feeding	 a	 large	 consortium	 of	 inhabiting	 bacteria	67	

(Bell	and	Mitchell	1972).	68	

	69	

2.	Quorum	sensing	in	the	phycosphere	of	phytoplankton	70	

2.1	Definition	of	quorum	sensing	71	

Quorum	 sensing	 is	 a	 term	 describing	 a	 cell-to-cell	 bacterial	 communication	 system,	72	

allowing	bacteria	to	adapt	their	physiological	response	to	the	ambient	bacterial	density	73	

(Fuqua	 et	 al.	 1994;	 Nealson	 1977).	 Bacteria	 engaged	 in	 quorum	 sensing	 emit	 small	74	

semiochemicals	 named	 autoinducers	 (Schulz	 2014)	 and	 simultaneously	 detect	 their	75	
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concentration.	 At	 low	 bacterial	 concentrations,	 few	 autoinducers	 are	 present	 in	 the	76	

nearby	environment	and	cells	display	 individual	phenotypes	and	behaviors.	When	 the	77	

concentration	of	autoinducers	reaches	a	certain	threshold,	reflecting	an	increase	in	local	78	

cell	 density,	 bacteria	 switch	 their	 genetic	 and	 physiological	 program	 and	 display	79	

collective	 phenotypes	 and	 comportments	 (Fuqua	 et	 al.	 1994).	 These	 communication	80	

mechanisms	 induce	 numerous	 transduction	 cascades	 and	 regulate	 the	 expression	 of	81	

many	 genes	 (Bassler	 1999).	 They	 are	 known	 to	 influence	 bacterial	 metabolism	 and	82	

phenotypes,	 including	 the	 establishment	 of	 biofilms	 (Parsek	 and	 Greenberg	 2005),	83	

bioluminescence	 (Nealson	 1977;	Waters	 and	Bassler	 2005)	 and	 virulence	 (Smith	 and	84	

Iglewski	2003)	among	other	functions	(Diggle	et	al.	2007).	85	

	 	86	

2.2	Experimental	approaches	used	to	characterize	quorum	sensing	in	the	87	

phycosphere	88	

Most	 of	 the	 studies	 reported	 in	 this	 review	 are	 based	 on	 a	 similar	 workflow.	 First,	89	

bacterial	 strains	 are	 isolated	 from	 natural	 seawater	 sampled	 during	 a	 phytoplankton	90	

bloom	(Bachofen	and	Schenk	1998)	or	are	isolated	from	algae	cultures	(Geng	and	Belas	91	

2010;	Gram	et	al.	2002;	Schaefer	et	al.	2008;	Wagner-Dobler	et	al.	2005).	The	capacity	of	92	

the	isolated	strains	to	communicate	using	quorum	sensing	is	then	tested	using	bacterial	93	

whole	cell	sensing-systems	(biosensors)	(Patzelt	et	al.	2013;	Rivas	et	al.	2010;	Wagner-94	

Dobler	et	al.	2005),	such	as	Escherichia	Coli	JB523	(Andersen	et	al.	2001),	Chromatium	95	

violaceum	CV026	 (McLean	et	 al.	 1997)	and	Vibrio	harveyi	JMH612	 (Henke	 and	Bassler	96	

2004)	 to	 name	 several	 examples	 among	 many	 others.	 These	 genetically	 modified	97	

organisms	 encode	 the	 purple	 pigment	 violacein	 (1)	 or	 the	 Green	 Fluorescent	 Protein	98	

(GFP)	or	and	luminesce	in	the	presence	of	exogenous	acylhomoserine	lactones	(AHLs),	99	

the	most	studied	semiochemical.	Such	approach	using	genetically	modified	organisms	to	100	
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detect	 AHLs	 expression	 is	 required,	 as	 these	 compounds	 are	 present	 in	 low	101	

concentrations	in	water	and	technically	very	difficult	to	be	directly	quantified	in	situ	 in	102	

bulk	 seawater	 (Hmelo	 and	 Van	 Mooy	 2009).	 A	 few	 report	mention	 the	 possibility	 to	103	

detect	 AHLs	 directly	 in	 seawater	 particles	 (Hmelo	 et	 al.	 2011),	 which	 can	 also	 avoid	104	

potential	false	positive	results	acquired	when	using	biosensors	(Holden	et	al.	1999).	105	

In	a	 further	 step,	AHLs	 can	 be	 characterized.	 In	general,	 bacterial	 supernatants	106	

containing	AHLs	are	extracted,	usually	with	ethyl	acetate.	Preliminary	studies	relied	on	107	

Thin	 Layer	 Liquid	 Chromatography	 (TLC)	 (Gram	 et	 al.	 2002;	 Rivas	 et	 al.	 2010).	More	108	

recent	studies	are	frequently	based	on	Liquid	Chromatography	and	Mass	Spectrometry	109	

(LC-MS)	 (Schaefer	 et	 al.	 2008),	 Gas	 Chromatography	 Mass	 Spectrometry	 (GC-MS)	110	

(Wagner-Dobler	et	al.	2005)	and	MS/MS	approaches	(Van	Mooy	et	al.	2012),	sometimes	111	

preceded	by	microfractionation,	which	allows	greater	 separation	and	concentration	of	112	

the	extracted	metabolites.	In	some	cases,	double	bond	location	has	been	determined	by	113	

derivatization	 with	 dimethyl	 disulfide	 (Neumann	 et	 al.	 2013),	 and	 irrevocable	114	

characterization	 can	 be	 achieved	 by	 1D	 and	 2D	 Nuclear	 Magnetic	 Resonance	 (NMR)	115	

analyses.	116	

The	experimental	approaches	to	evaluate	the	functional	roles	of	quorum	sensing	117	

are	more	 diverse.	Most	 of	 studies	have	 based	 their	work	on	model	 strains	where	 key	118	

genes	 involved	 in	autoinducer	biosynthesis	pathways	are	mutated,	 in	particular	 in	 lux-119	

like	genes.	Characterization	of	the	growth	and	phenotypes	of	mutant	strains	elucidates	120	

the	potential	physiological	functions	regulated	by	quorum	sensing	(Patzelt	et	al.	2013).		121	

	122	

2.3	Occurrence	in	the	phycosphere	123	

There	 is	 strong	 evidence	 that	 quorum	 sensing	 occurs	 in	 microbial	 communities	124	

inhabiting	 the	 phycosphere	 of	 phytoplankton	 cells.	 A	 pioneering	 study	 published	 in	125	
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1998	 revealed	 the	 presence	 of	 AHLs	 in	 cyanobacterial	 blooms	 (Bachofen	 and	 Schenk	126	

1998),	which	 is	 not	 surprising	 since	 the	 high	bacterial	 densities	 required	 for	 quorum	127	

sensing	occur	 in	 the	phycosphere.	Since	then,	many	reports	have	directly	detected	the	128	

existence	 of	 quorum	 sensing	 in	 various	 phycosphere	 samples.	 These	 very	 diverse	129	

bacteria	 were	 isolated	 from	 equally	 diverse	 phytoplankton,	 indicating	 that	 quorum	130	

sensing	 is	 not	 restricted	 to	 a	 particular	 type	 of	 bacteria–algae	 interaction.	 This	 wide	131	

diversity	 of	 phytoplankton	 includes	 dinoflagellates	 (isolated	 bacteria:	Dinoroseobacter	132	

shibae,	Hoeflea	 phototrophica,	 Roseovarius	mucosus),	 and	 other	 picoplankton	 cultures	133	

(isolated	 bacteria:	 Sulfitobacter	 sp.,	 Thalassospira	 lucentensis)	 (Wagner-Dobler	 et	 al.	134	

2005).	 Similarly,	 another	 study	 revealed	 two	 bacterial	 strains	 (Pseudomonas	 and	135	

Rhizobium)	 able	 to	 communicate	 by	 quorum	 sensing	 in	 a	 Botryococcus	 braunii	136	

associated	 biofilm	 (Rivas	 et	 al.	 2010).	 These	 results	 are	 in	 line	 with	 observations	 of	137	

quorum	sensing	in	bacterial	communities	attached	to	sinking	particulate	organic	matter	138	

(Gram	et	al.	2002;	Hmelo	et	al.	2011),	in	the	0.8	–	3	µm	fraction	from	filtered	seawater	139	

(Doberva	et	 al.	 2015)	and	 in	microbial	mats,	which	 include	 layers	of	 cyanobacteria	or	140	

eukaryotic	algae	(Decho	et	al.	2009;	McLean	et	al.	1997).	Interestingly,	a	few	reports	also	141	

noticed	the	capacity	of	certain	bacterial	phytoplankton	(cyanobacteria)	to	produce	AHLs	142	

in	their	phycosphere	(Sharif	et	al.	2008;	Zhai	et	al.	2012).	143	

	144	

2.4	Nature	of	molecules	involved	in	these	chemical	interactions	145	

Diverse	 secondary	 metabolites	 have	 been	 identified	 as	 quorum	 sensing	 mediators	146	

(Keller	and	Surette	2006).	Among	them,	AHLs	(or	autoinducer	type	1,	AI-1),	constitute	a	147	

widespread	class	of	quorum	sensing	molecules	 (Eberhard	et	 al.	 1981;	Lazdunski	 et	 al.	148	

2004).	These	semiochemicals	 are	made	of	 a	 lactonized	homoserine	 ligated	 through	an	149	

amide	bond	to	a	fatty	acyl	chain,	which	is	of	variable	length	(C4	to	C18)	and	oxidization	150	
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state	and	gives	the	signal	its	specificity.	However,	many	other	types	of	metabolites	have	151	

been	 identified	 that	 are	 involved	 in	 quorum	 sensing,	 including	 the	 p-coumaroyl	152	

homoserine	lactones	(Schaefer	et	al.	2008),	Furanosyl	Diester	Borate	(FDB,	autoinducer	153	

type	 2,	 AI-2)	 (Chen	 et	 al.	 2002),	 quinolones	 (Pesci	 et	 al.	 1999),	 peptides	 (Onaka	 et	 al.	154	

1995)	and	ɣ-butyrolactones	(Onaka	et	al.	1995).		155	

Many	different	types	of	AHLs	have	been	identified	from	bacteria	isolated	from	the	156	

phycosphere.	Rivas	et	 al.	 (2010)	 identified	 short	 chain	AHLs	 (C4-AHL	 (2)	 and	C8-AHL	157	

(3))	 in	Pseudomonas	 sp.	and	Rhizobium	sp.	associated	with	the	microalga	Botryococcus	158	

braunii.	However,	it	appears	that	long-chain	AHLs	(more	than	8	carbons	in	the	acyl	side	159	

chain)	 tend	 to	 dominate	 in	 these	 cultures.	 This	 trend	 is	 sometimes	 interpreted	 as	 an	160	

adaptation	to	increase	the	stability	of	these	molecules	in	aquatic	environments	(Hmelo	161	

and	Van	Mooy	2009;	 Yates	 et	 al.	 2002).	 LC-MS	 analysis	 revealed	 that	Dinoroseobacter	162	

shibae,	 isolated	 from	 the	 surface	 of	 the	 dinoflagellate	 Prorocentrum	 lima	 (Biebl	 et	 al.	163	

2005),	produces	C18:1-AHL	(or	C18-en	HSL)	(4)	and	C18:2-AHL	(or	C18-dien	HSL)	(5),	164	

including	one	to	two	unsaturated	bonds	in	the	acyl	side	chain.	In	addition,	the	strain	DFL	165	

18	 is	 reported	 to	 produce	 a	 C8-AHL	 (3)	 (Neumann	 et	 al.	 2013;	Wagner-Dobler	 et	 al.	166	

2005).	Roseovarius	mucosus	 strains,	 also	 isolated	 from	dinoflagellate	 cultures,	produce	167	

C18:1	(4)	and	C14:1	(6)	AHLs	(Wagner-Dobler	et	al.	2005).	Vibrio	strains	isolated	from	168	

Trichodesmium	 colonies	 produce	 3-oxo-C8-AHL	 (7),	 while	 the	 Erythrobacter	 strains	169	

obtained	over	the	same	experiment	produce	C14-HSL	(Van	Mooy	et	al.	2012).	The	AHLs	170	

produced	 by	 a	 few	 cyanobacterial	 strains	 have	 also	 been	 characterized.	 Microcystis	171	

aeruginosa	 is	 probably	 able	 to	 produce	 AHLs	 (Zhai	 et	 al.	 2012)	 (8),	 while	 the	172	

cyanobacterium	Gloeothece	 PCC6909	 produces	 a	 C8-AHL	 (3)	 (Sharif	 et	 al.	 2008).	 The	173	

AHLs	are	still	the	main	quorum	sensing	molecules	characterized	in	the	bacteria	isolated	174	

from	 the	 phycosphere,	 probably	 because	 not	 many	 studies	 have	 focused	 on	 other	175	
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compounds.	Two	exceptions	are	the	report	of	AI-2	(9)	producing	Vibrios	in	the	epibiont	176	

populations	of	Trichodesmium	(Van	Mooy	et	al.	2012)	and	the	report	of	a	potential	role	177	

for	AI-2	 in	 the	control	of	 the	algaecide	activity	against	 the	dinoflagellate	Gymnodinium	178	

catenatum	(Skerratt	et	al.	2002).	179	

Some	 recent	 publications	 also	 highlighted	 the	 role	 of	 tropodithietic	 acid	 (TDA)	180	

(10)	 as	 an	 autoinducer	 in	many	Rhodobacterales	 species	 (Geng	 and	Belas	 2010).	This	181	

molecule	 is	 produced	 by	 different	 bacterial	 strains,	 including	 the	 genus	 Phaeobacter,	182	

Silicibacter	 and	 Ruegeria,	 known	 to	 be	 frequently	 associated	 to	 unicellular	 algae	183	

(Brinkhoff	et	al.	2004;	Bruhn	et	al.	2005;	Geng	et	al.	2008;	Porsby	et	al.	2008).	A	series	of	184	

genetic-based	experiments	demonstrated	that	TDA	acts	as	an	autoinducer	in	Silicibacter	185	

sp.	TM1040	(Berger	et	al.	2011;	Geng	and	Belas	2010),	an	isolate	from	the	phycosphere	186	

of	the	dinoflagellate,	Pfiesteria	piscicida	(Alavi	et	al.	2001;	Miller	and	Belas	2006).	These	187	

approaches	demonstrated	that	TDA	induces	the	transcription	of	tda	genes,	and	that	the	188	

production	of	TDA	is	density	dependent	(Geng	and	Belas	2010),	 two	key	conditions	 in	189	

recognizing	TDA	as	a	quorum	sensing	mediator.	Interestingly,	TDA	production	has	been	190	

shown	 to	 be	 3.7	 to	 17.4	 times	 greater	 in	 standing	 compared	 to	 shaking	 cultures,	191	

suggesting	 that	 it	 plays	 an	 important	 role	 in	 bacterial	 biofilm	 function	 within	 the	192	

phytoplankton	phycosphere	(Geng	and	Belas	2010).	193	

	194	

2.5	Roles	of	quorum	sensing	in	the	phycosphere	195	

2.5.1	Formation	of	biofilms	196	

Quorum	 sensing	 is	 commonly	 hypothesized	 to	 play	 a	 role	 in	 niche	 colonization,	 in	197	

particular	 because	 quorum	 sensing	 is	 known	 to	 be	 involved	 in	 biofilm	 formation	 and	198	

surface	attachment	 (Davies	et	 al.	 1998;	Labbate	et	 al.	 2007;	Nadell	 et	 al.	 2008).	 Some	199	

studies	support	the	idea	that	quorum	sensing	may	help	bacteria	to	colonize	particles	of	200	
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organic	matter	or	the	phytoplankton	phycosphere	in	the	marine	environment	(Gram	et	201	

al.	2002;	Hmelo	et	al.	2011).	The	capacity	of	Roseobacter	to	attach	to	surfaces	has	been	202	

linked	with	an	ability	 to	 communicate	by	quorum	sensing	 (Rao	et	 al.	 2006).	 Similarly,	203	

the	emission	of	AHLs	by	the	cyanobacterium	Microcystis	correlates	with	the	switch	to	a	204	

biofilm	lifestyle	(Zhai	et	al.	2012).	The	same	hypothesis	has	been	proposed	to	interpret	205	

the	capacity	of	Phaeobacter	(isolated	from	a	dinoflagellate	culture)	to	produce	TDA	as	an	206	

autoinducer,	as	the	expression	of	tda	genes	coincided	with	biofilm-formation	(Geng	and	207	

Belas	 2010).	 However,	 the	 relationship	 between	 biofilm	 formation	 and	 emission	 of	208	

quorum	sensing	compounds	is	more	complex.	For	example,	Silicibacter	lacuscaerulensis	209	

and	Silicibacter	pomeroyi	both	harbor	quorum	sensing	systems,	but	do	not	present	 the	210	

same	 traits	 for	 surface	 colonization	 (Slightom	 and	 Buchan	 2009).	 Other	 authors	211	

demonstrated	 that	 biofilm	 formation	 is	 not	 necessary	 for	 TDA	 production	 in	212	

Phaeobacter	 inhibens	 (Prol	 Garcia	 et	 al.	 2014).	 Also,	 to	 our	 knowledge,	 no	 study	 has	213	

demonstrated	that	quorum	sensing	facilitates	biofilm	formation	within	the	phycosphere.		214	

	215	

2.5.2		Acquisition	of	nutrients	216	

The	hypothesis	that	quorum	sensing	may	favor	nutrient	acquisition	in	bacteria	has	been	217	

well	 supported	 from	 experiments	 on	 model	 strains	 in	 niches	 other	 than	 the	218	

phycospshere	(Popat	et	al.	2015;	Rosenberg	et	al.	1977).	For	example,	it	has	been	shown	219	

in	Pseudomonas	aeruginosa	 that	 the	secretion	of	proteases	confers	a	greater	benefit	 to	220	

the	whole	population	(Darch	et	al.	2012).		221	

The	phycosphere,	as	initially	described,	is	a	source	of	algal	nutrients	available	to	222	

bacteria	in	its	immediate	environment	(Bell	and	Mitchell	1972).	Thus,	it	is	not	surprising	223	

that	one	of	the	hypothesized	functions	of	quorum	sensing	in	the	phycosphere	is	that	cell	224	

coordination	 favors	nutrient	acquisition.	A	recent	article	clearly	showed	that	epibionts	225	
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of	Trichodesmium	use	quorum	sensing	to	up-regulate	phosphate	acquisition	by	alkaline	226	

phosphatases.	AHLs	were	involved	in	this	process,	while	AI-2	(9)	lead	to	a	decrease	of	227	

phosphate	uptake	 (Van	Mooy	et	 al.	 2012).	 	 Similarly,	 it	has	been	 shown	 that	Ruegeria	228	

pomeroyi	 overproduces	 N-(3-oxotetradecanoyl)-L-homoserine	 lactone	 (11)	 when	229	

grown	 with	 dimethylsulfoniopropionate	 (DMSP)	 as	 an	 energy	 source,	 which	 is	230	

metabolized	into	dimethyl	sulfide	(DMS)		(Johnson	et	al.	2016).	This	AHL	production	is	231	

also	consistent	with	important	modifications	in	the	cell	metabolome,	suggesting	that	in	232	

the	presence	of	algal	DMSP,	Roseobacter	switches	to	a	cooperative	lifestyle	(Johnson	et	233	

al.	2016)	.	Interestingly,	it	has	been	shown	that	p-coumaric	acid	(12),	a	product	of	algal	234	

lignin	degradation	released	by	decaying	phytoplankton	cells,	is	also	the	precursor	of	the	235	

p-coumaroylhomoserine	 lactone	 (13)	 involved	 in	Rhodopseudomonas	palustris	quorum	236	

sensing	 (Schaefer	 et	 al.	 2008).	 Thus,	 the	 emission	 of	 semiochemicals	 linked	 with	 the	237	

release	of	phytoplanktonic	molecules	may	also	convey	information	about	environmental	238	

conditions	 in	 the	 phycosphere,	 such	 as	 the	 availability	 of	 exogenously	 supplied	239	

substrates	(Buchan	et	al.	2014;	Schaefer	et	al.	2008).	In	a	similar	vein,	it	has	been	shown	240	

in	 the	 algae	 symbiont,	Dinoroseobacter	 shibae,	 that	 quorum	 sensing	 controls	 flagellar	241	

biosynthesis	 (Patzelt	 et	 al.	 2013),	 potentially	 enabling	 chemotaxis	 to	 microalgae	 and	242	

thus	favoring	nutrient	acquisition.	243	

	 The	 large-scale	 biogeochemical	 consequences	 of	 bacterial	 coordination	 for	244	

nutrient	 acquisition	 within	 the	 phycosphere	 remain	 poorly	 explored.	 A	 few	 articles	245	

explored	 this	 question	 by	 focusing	 on	 particulate	 organic	 carbon	 and	 marine	 snow-246	

associated	 communities,	 which	 may	 provide	 some	 pieces	 for	 a	 relevant	 conceptual	247	

framework.	For	example,	some	AHLs	were	detected	 in	organic	particles	collected	near	248	

Vancouver	Island	(Hmelo	et	al.	2011).	They	also	reported	an	enhancement	of	hydrolytic	249	

enzyme	 activities	 in	 microcosms	 when	 adding	 synthetic	 AHLs	 to	 particulate	 organic	250	
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carbon	collected	in	seawater	(Hmelo	et	al.	2011).	Similarly,	alkaline	phosphatase	activity	251	

is	enhanced	by	C10-AHL	(14)	in	a	Pantoea	ananatis	isolated	on	marine	snow	(Jatt	et	al.	252	

2015).	Such	results	reveal	that	quorum	sensing	in	particle-attached	bacteria	may	drive	253	

oceanic	 mineralization	 kinetics.	 However,	 more	 research	 is	 needed	 to	 better	254	

characterize	 biogeochemical	 implications	 of	 quorum	 sensing	 expression	 (and	 more	255	

generally	the	importance	of	cell-cell	interactions)	in	such	microenvironments,	including	256	

in	the	phycosphere	(Moran	et	al.	2016).	257	

	258	

2.5.3	Regulation	of	microbial	population	dynamics	259	

It	 is	 well	 established	 that	 quorum	 sensing	 is	 involved	 in	 antimicrobial	 compound	260	

synthesis	 (Bainton	 et	 al.	 1992;	 Wood	 and	 Pierson	 1996),	 and	 this	 activity	 has	 been	261	

documented	 in	 strains	 directly	 isolated	 from	 the	 phycosphere	or	 known	 to	 be	 able	 to	262	

colonize	such	microenvironments	(Bruhn	et	al.	2005;	Gram	et	al.	2002;	Wagner-Dobler	263	

et	al.	2005).	It	has	also	been	reported	that	quorum	sensing	regulates	the	production	of	264	

different	algaecides	compounds.	265	

TDA	(10),	reported	above	as	an	autoinducer	(Berger	et	al.	2011;	Geng	and	Belas	266	

2010)	inducing	its	own	synthesis,	acts	as	an	antimicrobial	molecule	(Berger	et	al.	2011;	267	

Bruhn	et	al.	2005;	Geng	et	al.	2008;	Porsby	et	al.	2008).	Its	synthesis	is	also	controlled	by	268	

quorum	sensing	AHLs	in	many	Roseobacter	(Berger	et	al.	2011;	Rao	et	al.	2007;	Thole	et	269	

al.	 2012).	 The	 production	 of	 TDA	 by	 Silicibacter	 may	 protect	 dinoflagellates	 from	270	

pathogen	attack	(Bruhn	et	al.	2005;	Geng	et	al.	2008).		271	

Similarly,	 Phaeobacter	 gallaeciencis	 BS107,	 associated	 with	 Emiliana	 huxleyi	 ,	272	

provides	 the	 alga	 with	 growth	 inducers	 like	 auxins	 during	 bloom	 conditions	 and	273	

produces	antibiotics	like	TDA,	which	fight	algal	pathogens	(Geng	et	al.	2008;	Greer	et	al.	274	

2008;	Thiel	 et	 al.	 2010).	 In	 return,	Phaeobacter	gallaeciencis	beneficiates	 of	 the	DMSP	275	
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produced	 by	 the	 algae	 as	 a	 sulfur	 source	 (González	 et	 al.	 1999;	 Newton	 et	 al.	 2010).	276	

Thus,	it	at	first	engages	in	a	symbiotic	relationship	with	Emiliana	huxleyi.	By	contrast,	at	277	

the	 end	 of	 the	 phytoplankton	 bloom,	 Phaeobacter	 gallaeciencis	 liberates	 diverse	278	

roseobacticides	 (troponoids)	 that	 act	 as	 algaecides.	 These	metabolites	 are	 emitted	 in	279	

response	to	p-coumaric	acid	(12),	sinapic	acid,	ferulic	acid	and	cinnamic	acid	(all	lignin	280	

precursors)	 released	by	decaying	Emiliana	huxleyi	cells	 (Seyedsayamdost	et	 al.	 2011a;	281	

Seyedsayamdost	 et	 al.	 2011b).	 At	 this	 stage,	 Phaeobacter	 gallaeciencis	 switches	 to	282	

becoming	a	parasite	of	its	host	algae	(Seyedsayamdost	et	al.	2011a;	Seyedsayamdost	et	283	

al.	2011b).	284	

Various	 alagecides	 have	 been	 identified	 from	 bacteria	 inhabiting	 the	285	

phycosphere,	and	sometimes	a	regulation	of	their	emission	by	quorum	sensing	has	been	286	

either	demonstrated	or	is	highly	likely	(Nakashima	et	al.	2006;	Paul	and	Pohnert	2011;	287	

Skerratt	et	al.	2002).	 	For	example,	 the	strain	Kordia	algicida,	although	 isolated	 from	a	288	

red	tide	composed	of	the	diatom	Skeletonema	costatum	(Sohn	et	al.	2004),	demonstrated	289	

an	algicidal	activity	against	the	diatoms	Skeletonema	costatum,	Thalassiosira	weissflogii,	290	

Phaeodactylum	tricornutum,	but	not	against	Chaetoceros	didymus.	This	algaecide	activity	291	

is	mediated	by	the	excretion	of	proteases,	which	experimental	data	suggest	is	regulated	292	

by	quorum	sensing	based	on	AHLs	(Paul	and	Pohnert	2011).	In	a	similar	vein,	a	potential	293	

AI-2	 based	 regulation	 of	 bacterial	 algaecide	 activity	 against	 the	 dinoflagellate	294	

Gymnodinium	catenatum	has	also	been	suggested	(Skerratt	et	al.	2002).	295	

In	 a	 similar	 way,	 the	 recently	 isolated	 2-heptyl-4-quinolone	 (15)	 emitted	 by	296	

Pseudolateromonas	piscicida	 induces	mortality	of	 the	marine	 coccolithophore	Emiliana	297	

huxleyi	 (Harvey	et	al.	2016).	The	2-heptyl-4-quinolone	 is	also	reported	as	an	antibiotic	298	

and	as	a	precursor	of	the	quorum	sensing	mediator	2-heptyl-3-hydroxy-4-quinolone	and	299	

designated	 the	 «	Pseudomonas	 quinolone	 signal	»	 (PQS).	 However,	 interestingly,	 this	300	
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quorum	sensing	compound	 is	not	produced	by	Pseudoalteromonas	piscicida	(Harvey	et	301	

al.	2016).		302	

	303	

2.5.4	Induction	of	phenotypic	heterogeneity	 304	

Another	potential	function	of	quorum	sensing	in	the	phycosphere	is	the	preservation	of	305	

population	heterogeneity	which	 is	 thought	 to	be	a	 survival	 strategy	 in	 fluctuating	and	306	

unpredicted	 environment.	 It	 has	 been	 recently	 highlighted	 in	 Dinoroseobacter	 shibae	307	

(Patzelt	et	al.	2013),	a	strain	isolated	from	a	dinoflagellate	culture	(Biebl	et	al.	2005)	that	308	

the	 combination	 of	 genetic	 and	 transcriptomic	 analysis	 revealed	 that	 the	 lack	 of	 AHL	309	

production	deeply	affects	cell	physiology,	with	344	genes	differentially	transcribed.	This	310	

research	 reveals	 that	 quorum	 sensing	 is	 implied	 in	 many	 physiological	 activities,	311	

including	 cell	 division,	 flagellar	 biosynthesis,	 sigma	 factor	 synthesis,	 as	 well	 as	 T4SS	312	

production,	a	protein	implied	in	both	DNA	and	protein	secretion	systems	(Christie	et	al.	313	

2005).	 Also,	 the	 authors	 demonstrated	 the	 implication	 of	 quorum	 sensing	 in	 the	314	

induction	 of	 individual	 morphological	 heterogeneity	 within	 a	 single	 population	 of	315	

Dinoroseobacter.	 The	 luxI	 mutant	 led	 to	 single	 ovoid	 morphology	 of	 Dinoroseobacter	316	

cells,	 while	 the	 wild-type	 phenotype,	 restored	 with	 C18-AHL,	 included	 ovoid,	 rod-317	

shaped	and	very	elongated	cells.	The	maintenance	of	such	heterogeneity	in	a	population	318	

may	 convey	 ecological	 advantages	 at	 the	 population	 level,	 for	 example	 during	319	

phytoplankton	 blooms	where	 cell	 shape	 dependent	 processes	 such	 as	grazing	may	 be	320	

more	 intense	 (Patzelt	 et	 al.	 2013).	A	population	might	enhance	 its	 fitness	by	allowing	321	

individual	 cells	 to	 stochastically	 transition	 among	multiple	 phenotypes,	 thus	 ensuring	322	

that	some	cells	are	always	prepared	for	an	unforeseen	environmental	fluctuation	(Acar	323	

et	 al.	 2008).	The	 authors	 in	2013	suggest	 that	quorum	sensing	 induced	heterogeneity	324	
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ensures	 at	 least	 a	 subpopulation	 of	 cells	 maintains	 a	 high	 fitness	 under	 constantly	325	

changing	environment	such	as	seasonal	planktons	bloom.		326	

	327	

2.6	Microalgal	stimulation	of	quorum	sensing	328	

Enhancements	 of	 quorum	 sensing	 activities	 have	 been	 observed,	 in	 particular	 in	 the	329	

freshwater	 alga	 Chlamydomonas	 reinhardii.	 This	 alga	 synthesizes	 a	 dozen	 chemical	330	

compounds	that	mimics	AHL	activity,	and	so	is	able	to	readily	stimulate	various	types	of	331	

quorum	sensing	receptors	(Teplitski	et	al.	2004).	Also,	colonies	of	both	Chlamydononas	332	

reinhardtii	 and	 Chlorella	 sp.	 were	 able	 to	 enhance	 the	 quorum	 sensing	 dependent	333	

luminescence	of	Vibrio	harveyi	(Teplitski	et	al.	2004).	Some	of	these	compounds	emitted	334	

by	Chlamydomonas	have	been	 identified:	 the	vitamin	riboflavin	(16)	and	 its	derivative	335	

lumichrome	(17)	are	able	to	stimulate	Las	R	receptors	in	Pseudomonas	aeruginosa	and	336	

thus	 are	 the	 first	 eukaryotic	 quorum	 sensing	 agonists	 (Rajamani	 et	 al.	 2008).	 The	337	

ecological	 function	of	 these	metabolites	 remains	 to	 be	 investigated.	 Collectively,	 these	338	

data	 reveal	 that	 microalgae	 chemically	 influence	 bacterial	 quorum	 sensing	 in	 the	339	

phycosphere.	340	

	341	

3.	Quorum	quenching	in	the	phycosphere	342	

3.1	Definition	of	quorum	quenching	343	

By	 contrast	 to	 quorum	 sensing,	 quorum	 quenching	 describes	 the	 mechanisms	 which	344	

inactivate	 quorum	 sensing	 (Dong	 et	 al.	 2001;	 Givskov	 et	 al.	 1996).	 A	 few	 potential	345	

functions	 of	 quorum	 quenching	 have	 been	 characterized	 so	 far,	 including	 the	346	

inactivation	 of	 pathogens,	 virulence	 or	 competitors	 by	 the	 bacteria	 producing	 these	347	

quorum	quenching	molecules,	or	self	modulation	of	quorum	sensing	signals	(Romero	et	348	

al.	 2008;	 Zhang	 et	 al.	 2002).	 However,	 many	 functional	 effects	 of	 quorum	 quenching	349	
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remain	unknown.	Quorum	quenching	based	mechanisms	are	highly	diverse	and	include,	350	

for	 example,	 AHLs	 degradation	 by	 oxidization	 (Borchardt	 et	 al.	 2001)	 and	 enzymatic	351	

hydrolysis	of	AHLs	lactones	by	either	lactonases	or	acylases	(Dong	et	al.	2007;	Romero	352	

et	al.	2008).	The	synthesis	of	 inhibitors	or	analogs	of	quorum	sensing	signals	by	algae,	353	

invertebrates,	 plants	 and	 bacteria	 have	 also	 been	 described	 as	 quorum	 quenching	354	

mechanisms	(Gao	et	al.	2003;	Givskov	et	al.	1996;	Kim	et	al.	2007).	355	

	356	

3.2	Occurrence	in	the	phycosphere	of	microalgae	357	

Quorum	quenching	activities	have	been	previously	detected	in	marine	bacteria	(Hmelo	358	

and	Van	Mooy	2009;	Hmelo	et	al.	2011;	Romero	et	al.	2011;	Van	Mooy	et	al.	2012)	and	in	359	

macroalgae	 (Rasmussen	et	 al.	 2000).	The	presence	of	quorum	quenching	molecules	 in	360	

the	phytoplankton	phycosphere	has	also	been	verified.	Chlorella	saccharophila,	Chlorella	361	

vulgaris,	Nannochlororopsis	sp.,	Isochrisis	sp.,	Tetraselmis	suecica	and	Tetraselmis	striata	362	

were	 identified	 as	 a	 quorum	 quenching	 compounds	 producers,	 inhibiting	 color	 and	363	

fluorescence	produced	by	 the	AHL-based	 reporting	 strains	Chromatium	violaceum	 and	364	

Escherichia	 coli	 JB523	 (Natrah	 et	 al.	 2011).	 Interestingly,	 it	 has	 also	 been	 shown	 that	365	

Chlorella	 saccharophila,	 Nannochloris	 atomus	 and	 Nannochloropsis	 oculata	 inhibit	 the	366	

AHL	 based	 quorum	 sensing	 reporter	 strain	 Vibrio	 harveyi	 JMH612,	 revealing	 that	367	

biosensors	 detect	 different	 types	 of	 algae	 quorum	 quenching	 activities.	 However,	 the	368	

molecules	 responsible	 of	 the	 observed	 quorum	 quenching	 effect	 are	 still	 unknown.	369	

Similarly,	a	novel	acylase	has	been	identified	in	Anabaena	sp.	PCC7120	and	homologous	370	

sequences	of	 this	 enzyme	were	also	detected	 in	 the	 filamentous	 cyanobacteria,	Nostoc	371	

punctiforme,	 Gloeobacter	 violaceus	 and	 Synechocystis	 sp.	 (Romero	 et	 al.	 2008).	372	

Halogenation	of	 the	acyl	 chains	 in	AHLs	 can	also	 inhibit	quorum	sensing	mechanisms.	373	
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Interestingly,	sequences	encoding	potential	halogenases	were	found	in	public	databases	374	

containing	the	genome	of	the	diatom	Fragilariopsis	cylindrus	(Amin	et	al.	2012).	375	

	 	376	

3.3	Control	of	pathogenic	bacteria	virulence	377	

Quorum	 sensing	 controls	 many	 genes	 involved	 in	 virulence.	 Thus,	 inhibiting	 quorum	378	

sensing	 can	help	 to	 limit	bacterial	 induced	diseases.	 In	 light	of	 the	 increasing	 concern	379	

over	 widespread	 antibiotic	 resistance,	 an	 understanding	 of	 other	 strategies	 to	 limit	380	

bacterial	growth	and	virulence	is	invaluable.	From	this	point	of	view,	quorum	quenching	381	

molecules	 appear	 very	 promising	 for	 biotechnological	 purposes	 (Singh	 2015),	 in	382	

particular	to	fight	bacterial	diseases	in	aquaculture	(Defoirdt	et	al.	2011).	For	example,	383	

microalgae	producing	quorum	quenching	metabolites	have	the	potential	in	aquaculture	384	

to	protect	against	aquatic	pathogens	(Natrah	et	al.	2011).	A	few	studies	have	shown	that	385	

marine	 cyanobacteria	 have	 quorum	 quenching	 activity	 against	Vibrio	 spp.,	 one	 of	 the	386	

most	 important	 pathogens	 in	 aquaculture,	 but	 also	 against	 other	 pathogens	 including	387	

Pseudomonas	aeruginosa	(Dobretsov	et	al.	2010;	Kwan	et	al.	2011).	Cyanobacteria	of	the	388	

genus	 Lyngbya	 appear	 to	 be	 particularly	 active	 emitters	 of	 quorum	 quenching	389	

compounds	that	include	amides,	peptides	and	lipids	(Dobretsov	et	al.	2011;	Meyer	et	al.	390	

2016).	 Similarly,	 Leptolyngbya	 crossbyana	 produces	 (S)-3-hydroxy-γ-butyrolactones	391	

(Honaucines	(18,19,20)),	which	inhibits	quorum	sensing-dependent	bioluminescence	of	392	

Vibrio	harveyi	BB120.	Similar	quorum	quenching	activity	by	the	microalga	Picochlorum	393	

sp.	 S1b	 against	 Vibrio	 is	 also	 suspected	 (Kuo	 et	 al.	 2014),	 and	 the	 cyanobacterium	394	

Blennothrix	 cantharidosmum	 produces	 tumonoic	 acids	 which	 moderately	 inhibits	395	

bioluminescence	of	a	wild	strain	of	Vibrio	harveyi	without	affecting	growth.	Along	these	396	

biotests,	tumonoic	acid	F	(21)	appears	to	be	the	most	active	(Choi	et	al.	2012).	397	

	398	
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4.	Controversies	399	

The	 role	 of	 quorum	 sensing	 in	 microbiomes	 remains	 controversial	 (Cornforth	 et	 al.	400	

2014;	Platt	and	Fuqua	2010;	West	et	al.	2012),	and	its	function	in	the	phycosphere	is	still	401	

a	 large	and	open	 field	of	 investigation	 (Bachofen	and	Schenk	1998;	Decho	et	 al.	 2009;	402	

Hmelo	et	 al.	 2011).	Clearly,	AHLs	 carry	 information	and	act	 as	 semiochemicals	 (Dicke	403	

and	 Sabelis	 1988).	However,	 additional	 functions	 of	 these	 compounds	 have	 also	 been	404	

described,	 including	 antimicrobial	 activity	 and	 iron	 chelation	 (Kaufmann	 et	 al.	 2005;	405	

Schertzer	 et	 al.	 2009).	 This	 is	 also	 the	 case	 for	 TDA,	 which	 was	 first	 known	 in	406	

Rhodobacterales	as	an	antibacterial	agent	(Brinkhoff	et	al.	2004)	before	being	described	407	

as	 a	 quorum	 sensing	 autoinducer	 (Geng	 and	 Belas	 2010).	 Clearly,	 quorum	 sensing	408	

molecules	 display	 versatility	 and	 play	 different	 roles,	 depending	on	 both	 the	 emitting	409	

and	targeted	cells.	.	410	

Another	 source	 of	 controversy	 is	 whether	 sensing	 autoinducer	 concentrations	411	

actually	 functions	 to	 detect	 the	 rate	 mass	 transfer	 in	 the	 environment	 (“diffusion-412	

sensing”)	 rather	 than	 the	 local	 density	 of	 other	 bacteria	 (“pure”	 quorum	 sensing)	413	

(Redfield	 2002).	 The	 concept	 of	 “efficiency-sensing”	 unifies	 diffusion-sensing	 and	414	

quorum	 sensing	 as	 specific	 cases	 within	 a	 more	 general	 framework	 whereby	415	

autoinducer	sensing	allows	bacteria	to	infer,	in	combination,	mass	transfer,	cell	density	416	

and	 spatial	 distribution	 of	 other	 cells	 (Hense	 et	 al.	 2007).	 This	 concept	 of	 efficiency-417	

sensing	could	aid	in	the	interpretation	of	signaling	events	observed	in	the	complexity	of	418	

the	 phycosphere	 where	 the	 environment	 is	 structured	 on	 a	 microscale	 by	 physical	419	

barriers	(cells	are	embedded	in	a	complex	matrix	of	polymers),	subject	to	fluid	motions	420	

(Amin	 et	 al.	 2012)	 and	 variable	 spatial	 clustering	 of	 bacteria	 and	 cell	 abundance	421	

(Doucette	1995).	By	 contrast,	 the	 “pure”	quorum	sensing	 framework	arose	 from	well-422	

controlled	laboratory	studies	on	clonal	populations	(Hense	et	al.	2007).	423	
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	424	

Conclusions	and	perspectives	425	

The	objective	of	this	review	was	to	shed	light	on	quorum	sensing	communication	in	the	426	

phycosphere	 of	 microalgae.	 Many	 reports	 have	 revealed	 the	 presence	 of	 this	427	

communication	 system	 in	 bacteria	 isolated	 from	 phytoplankton	 blooms	 or	 associated	428	

with	 microalgae	 cultures.	 It	 appears	 from	 the	 literature	 that	 quorum	 sensing	 is	 a	429	

common	type	of	bacterial	communication	in	the	phycosphere.	It	is	performed	by	diverse	430	

bacteria	 within	 the	 phycosphere	 of	 a	 large	 diversity	 of	 microalgae.	 The	 metabolites	431	

involved	 seem	 dominated	 by	 long-chain	 AHLs,	 however	 some	 reports	 mention	 the	432	

potential	 importance	 of	 AI-2.	 The	 emerging	 picture	 greatly	 needs	 further	 research	 to	433	

evaluate	 the	 extent	 of	 bacterial	 and	 chemical	 diversity	 involved	 in	 quorum	 sensing	434	

processes	within	 the	 phycosphere.	 Little	 is	 known	 about	 the	 potential	 involvement	of	435	

diverse	 types	 of	 AHLs	 and	 other	 quorum	 sensing	 molecules,	 including	 gamma-436	

butyrolactones,	quinolones,	and	others.	437	

	 Already,	very	diverse	functions	have	been	identified	in	the	phycopshere	involving	438	

quorum	sensing.	These	functions	include	biofilm	formation	and	nutrient	acquisition,	as	439	

well	 as	 the	 regulation	 of	 algaecide	 production,	 antibiotic	 synthesis	 and	 cell	 shape.	440	

Probably,	 this	 list	 remains	 far	 for	 the	 real	 extent	 of	 biological	 functions	 governed	 by	441	

quorum	 sensing	 within	 the	 phycopshere.	 Recent	 advances	 coupling	 genomics	 with	442	

metabolomics	approaches	will	give	 interesting	new	insights	 in	 this	 field	of	research.	A	443	

promising	experimental	approach	to	answer	these	questions	is	simultaneous	tracking	of	444	

transcriptomic	 and	 metabolomic	 variations	 within	 model	 organisms	 grown	 in	 co-445	

culture.	 This	 method	 enables	 the	 characterization	 of	 metabolic	 pathways	 affected	 by	446	

quorum	 sensing	 expression	 in	 both	 algae	 and	 bacteria.	 Furthermore,	 the	 large	 scale	447	
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impacts	 of	 quorum	 sensing	 in	 the	 phycosphere	 remain	 very	 poorly	 characterized,	448	

particularly	in	terms	of	biogeochemistry	and	evolution.	449	

	 This	 review	 also	 described	 the	 importance	 that	 quorum	 quenching	 has	 in	 the	450	

phycosphere	of	microalgae.	Many	studies	 revealed	 the	emission	of	quorum	quenching	451	

molecules	either	by	algae	or	diverse	bacteria	in	the	phycospshere.	These	molecules	have	452	

important	biotechnological	potential,	as	they	are	able	to	control	growth	and	virulence	of	453	

microorganisms.	 Again,	 more	 research	 is	 needed	 to	 characterize	 new	molecules	 with	454	

such	activities,	and	to	better	characterize	their	mechanism	of	action.		455	
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FIGURE	LEGENDS	461	

Figure	1	to	7:	Major	compounds	cited	in	the	text	462	

Figure	 8:	 Synthetic	 view	 of	 quorum	 sensing	 processes	 in	 the	 phycopshere	 of	463	

phytoplankton	464	

Figure	 9:	 Synthetic	 view	 of	 quorum	 quenching	 processes	 in	 the	 phycosphere	 of	465	

phytoplankton		466	
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