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Abstract: 12 

The saturated sediments below and adjacent to the riverbed (i.e., hyporheic zone) can be a refuge for biota during 13 

disturbances, such as drying. Prior to drying, organisms are constrained by abiotic and biotic factors (e.g., water 14 

temperature, competition) and may respond through vertical migration into the hyporheic zone. However, it 15 

remains unclear when these factors become harsh enough to trigger this response. Furthermore, potential 16 

consequences of using the hyporheic zone, which is often food-limited, on the survival, ecosystem function and 17 

physiology of organisms are unknown. Using 36 mesocosms, the hypotheses that i) Gammarus pulex migrates 18 

into the hyporheic zone to avoid increasing surface water temperature and intraspecific competition and ii) 19 

migration would have negative consequences on the survival, leaf mass consumption and energy stores of 20 

organisms were tested. Three levels of temperature (15, 20, 25°C) and species density (low, medium, high) were 21 

manipulated in a factorial design over 15 days. Increased temperature to 25°C and a 3-fold increase in density 22 

both caused G. pulex to migrate into the hyporheic zone, but the interaction of these factors was not synergistic. 23 

Importantly, the survival, leaf consumption and glycogen content were reduced in high temperature and density 24 

treatments, indicating tradeoffs between tolerating harsh surface conditions and limitations in the hyporheic 25 

zone. Identifying that the hyporheic zone is used by invertebrates to avoid high water temperature and 26 
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intraspecific competition is a key finding considering the global-scale increases in temperature and flow 27 

intermittence, yet its capacity to provide refuge is likely temporally limited.  28 

Key words:  29 

stream drying, refuge, resistance, resilience, avoidance behavior, invertebrates 30 

Introduction 31 

The saturated interstitial areas beneath the riverbed and into the adjacent banks (i.e., hyporheic zone; White, 32 

1993) have long been recognized for their potential to serve as a refuge for biota during disturbances (i.e., 33 

hyporheic refuge hypothesis; Palmer et al. 1992, Dole-Olivier et al. 1997, Stubbington 2012). They may also be 34 

a major source of colonization promoting the resilience of invertebrates (i.e., capacity to recover, Stanley 1994) 35 

following disturbances, such as flooding and drying (e.g., Holomuzki and Biggs 2007, Kawanishi et al. 2013, 36 

Vander Vorste et al. 2015 in review). Despite substantial empirical evidence showing that the physical 37 

characteristics of the hyporheic zone (e.g., % fine sediment, hydraulic conductivity, vertical hydraulic gradient) 38 

alter its potential to serve as a refuge (e.g., Navel et al. 2010, Descloux et al. 2013, Mathers et al. 2014), the 39 

abiotic or biotic factors invertebrates respond to through vertical migration into the hyporheic zone remain 40 

speculative (Stubbington 2012).  Among these factors, water temperature and biotic interactions are thought to 41 

be two of the most influential in triggering a behavioral response for stream invertebrates to enter the hyporheic 42 

zone (James et al. 2008, Wood et al. 2010, Stubbington et al. 2011). 43 

 Understanding the effects of increasing water temperature on the vertical migration of invertebrates into 44 

the hyporheic zone is critical in a context of global warming and water scarcity (Postel 2000, Datry et al. 2014, 45 

Jaeger et al. 2014). In many rivers, the increase in water temperature observed over the past 100 years ranges 46 

between 0.009‒0.077 °C y-1 (Kaushal et al. 2010) and higher maximum temperatures (e.g., Mantua et al. 2010) 47 

are exceeding the physiological tolerance of aquatic organisms (Mouthon and Daufresne 2006, Wenger et al. 48 

2011, Stewart et al. 2013a). For example, a 1.5°C increase in mean temperature combined with historically high 49 

summer temperatures (29.5°C max.) caused dramatic and long-lasting (>1 yr) declines in mollusk richness and 50 

diversity in the Saȏne River, France (Mouthon and Daufresne 2006). Moreover, increasing water scarcity issues 51 

and subsequent low flow, flow cessation and drying events in river systems (Postel 2000, Datry et al. 2014, 52 

Jaeger et al. 2014) exacerbate the general trend in water temperature increase. For example, during the initial 53 

contraction phase of drying streams, water temperature can reach above 25°C (e.g., Boulton 1989, Ludlam and 54 
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Magoulick 2010). Insect larvae (e.g., Ephemeroptera, Plecoptera, Trichoptera), and crustaceans (e.g., 55 

Amphipoda, Isopoda) experience drastic increases in mortality between 21‒25°C (Stewart et al. 2013a, Foucreau 56 

et al. 2014). To avoid thermal stress, invertebrates can migrate into the hyporheic zone, which is often several 57 

degrees cooler and remains buffered from highly variable surface temperatures (Constantz and Thomas 1997, 58 

Evans and Petts 1997). However, it is unknown at what temperatures invertebrates vertically migrate into the 59 

hyporheic zone, limiting our capacity to understand and predict the effects of global change on river community 60 

resilience. As climate change and water abstraction will continue to challenge river communities, quantifying the 61 

potential of the hyporheic zone to act as a refuge will be a key step towards predicting future responses of 62 

aquatic invertebrates (Keppel et al. 2015).  63 

 In addition to increased water temperature, vertical migration may occur when levels of biotic 64 

interactions increase, resulting notably from the contraction of aquatic habitat occurring during low flow, flow 65 

cessation and river drying (e.g., Power et al. 1985, Ludlam and Magoulick 2010). In particular, intraspecific 66 

competition for space and food can increase greatly following flow cessation (Lake 2003), as invertebrate 67 

densities reach up to 35 000 individuals (ind.) m-2 (e.g., Acuña et al. 2005). High density of Chironomus riparius 68 

(Diptera) resulted in up to 75%  mortality of early instars, delayed development and increased migration to avoid 69 

competition (Silver et al. 2000). The hyporheic zone may provide refuge from intraspecific competition 70 

occurring on the surface (James et al. 2008, Stubbington et al. 2011); particularly because invertebrate densities 71 

in the hyporheic zone are comparatively lower (Datry 2012, Capderrey et al. 2013). Furthermore, biotic 72 

interactions may increase (e.g., Scherr et al. 2010), decrease (e.g., Jiang and Morin 2004), or remain unaffected 73 

(e.g., Wooster et al. 2011) at high water temperatures, subsequently affecting vertical migration of surface-74 

dwelling invertebrates into the hyporheic zone. Yet the constant interplay between water temperature and 75 

intraspecific competition in the natural environment render their effects difficult to disentangle using field 76 

surveys (Heino et al. 2015). Experimental approaches (e.g., mesocosms) can advance our understanding of the 77 

responses of invertebrates to multiple abiotic and biotic factors (Stewart et al. 2013b), and have been crucial to 78 

understanding vertical distribution of invertebrates at surface water and hyporheic zone interface (e.g., Nogaro et 79 

al. 2009, Navel et al. 2010, Vadher et al. 2015). 80 

 Despite the potential for invertebrates to seek refuge in the hyporheic zone to avoid the harmful effects 81 

of water temperature and/or biotic interactions occurring on the surface, their survival, ecosystem function and 82 

physiology may be jeopardized because food resources are often limited or of poor quality (Hervant et al. 1997, 83 

Burrell and Ledger 2003, Danger et al. 2012). For example, the surface invertebrate, Gammarus fossarum, 84 
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subjected to starvation showed immediate hyperactivity and experienced mortality after 20 days (Hervant et al. 85 

1997). Unless invertebrates can return to the surface to consume leaf litter (e.g., Elliott 2005, Navel et al. 2010), 86 

the decomposition of leaf litter on the surface will be considerably reduced when surface detritivores enter the 87 

hyporheic zone. Moreover, at the physiological level, invertebrate triglycerides and glycogen contents, two 88 

major energy stores involved in reproductive physiology and defense against environmental stress, may be 89 

considerably reduced within 1‒2 weeks of the absence of food (Hervant et al. 1999). Therefore, use of a food-90 

limited environment (the hyporheic zone) by invertebrates to avoid high temperatures and biotic interactions on 91 

the surface represents a tradeoff that may undermine the capacity of the hyporheic zone to provide refuge during 92 

disturbances.  93 

 In this study, we measured the effect of temperature and intraspecific competition on the vertical 94 

migration of the common stream shredding detritivore, Gammarus pulex (Crustacea: Amphipoda) into the 95 

hyporheic zone. We hypothesized that the hyporheic zone would be used as a refuge by this species to avoid 96 

high water temperature and intraspecific competition. We also hypothesized that migration into hyporheic zone 97 

would have negative effects on the survival, leaf consumption and energy stores of organisms. Based on these 98 

hypotheses, we predicted that: i) a higher proportion of organisms would migrate into the hyporheic zone as 99 

water temperature and species density increased, and ii) that the survival, leaf mass consumption rate and energy 100 

stores would decrease at the highest temperature and species densities. We also examined the potential 101 

interaction effect (synergistic, antagonistic, additive) of water temperature and intraspecific competition on the 102 

vertical migration of G. pulex into the hyporheic zone.  103 

Methods 104 

Study organism and collection site 105 

Gammarus pulex is a widespread and common surface-dwelling shredder that is important in leaf litter 106 

degradation across European streams (MacNeil et al. 1997, Dangles and Malmqvist 2004, Piscart et al. 2011). 107 

All individuals were collected from a small stream near Dijon, France (47°24′13″N, 04°52′57″E), where species 108 

identity was previously confirmed through DNA analysis (Foucreau et al. 2013). During collection, sieves 109 

between 2.5‒5.0 mm were used to select similar-sized individuals. Individuals were returned to a temperature-110 

controlled (15 ± 2°C) room and allowed to acclimatize to laboratory temperature, water quality and food source 111 

for a 14-day period (Navel et al. 2010) before the start of the experiment. Water temperature was kept constant 112 

(15 ± 2°C) using a thermostatic water pump (TECO, Ravena, Italy) and oxygen concentrations were maintained 113 
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near saturation with oxygen bubblers. During this time, individuals were fed alder leaves (Alnus glutinosa) 114 

collected in the autumn at a nearby river bank, air-dried and stored at room temperature.  115 

Mesocosm description 116 

Mesocosms (n = 36) were constructed from opaque PVC tubing (70 cm length × 25 cm diameter, 2 mm 117 

thickness) with a PVC end cap, forming a vertical column (Fig. 1). To enumerate the individuals that migrated 118 

into the hyporheic zone, mesocosms were constructed in two parts, a 30-cm surface zone and a 40-cm hyporheic 119 

zone. These parts were joined during the experiment using PVC flanges (25 cm diameter) and allowed quick 120 

separation at the end of the experiment. Mesocosms were filled to a height of 50 cm with gravel substrate (10‒14 121 

mm) extracted from the Rhône River, France, leaving 10 cm of substrate in the surface zone (Fig. 1). 122 

Dechlorinated tap water was continuously pumped from a 1000-L tank into the bottom of the mesocosms using 123 

two 24-channel peristaltic pumps at a rate of 1.25 L h-1, creating a slightly positive vertical hydraulic gradient 124 

(i.e., upwelling movement of water) and constituting a complete renewal of mesocosm water volume in 24 h 125 

(Fig. 1). Water drained through a hole (2 cm diameter), screened (0.5 cm mesh) to prevent invertebrates from 126 

escaping, located 5 cm below the top of each column. Surface water was aerated using an oxygen bubbler to 127 

keep dissolved oxygen (O2) concentrations between 8.5‒9.5 mg L-1. A 12:12-h light:dark cycle was applied to 128 

the surface water zone using Grolux (35 W, 8500 K, Sylvania Inc., Noida, India) aquarium lights above 129 

mesocosms (Fig. 1). 130 

Experimental design 131 

Surface water temperature and species density were manipulated at 3 levels each in a factorial design over a 15-132 

day period. Three treatments of temperature (15, 20 and 25°C) were tested (n= 12 mesocosms per temperature). 133 

To heat the surface water, a 10-m long heated cable (0.5 cm diameter) (Hydrokable, Hydor Inc. Sacramento, CA 134 

USA) was buried into the surface substrate and coiled around the inner wall of the mesocosms to the top of the 135 

surface zone. Surface water temperature was controlled using an electronic thermostat (± 0.1°C) (Hobby, Dohse 136 

Aquaristik GmbH & Co., Grafschaft, Germany). Surface and hyporheic water temperature was recorded hourly 137 

using iButton loggers (Maxim Integrated, San Jose, CA USA). For the unheated temperature treatment (15°C) 138 

(see below), an equally sized cable was similarly installed to account for the possible effect cables might have on 139 

vertical migration. Water temperature in the hyporheic zone was kept at 15.5 ± 0.5°C (mean ± SD) throughout 140 

the experiment, representing an approximate mean temperature reported from several rivers and providing a 141 

thermal refuge for organisms (Constantz and Thomas 1997, Evans and Petts 1997, Stubbington et al. 2011). For 142 
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the first 24 hours of the experiment, water temperature was kept constant (15.2 ± 0.3°C) across all treatments. 143 

After this acclimatization period, temperatures were increased to the treatment level at a rate of 0.2°C h-1 for 144 

20°C and 0.4°C h-1 for 25°C treatments over a 24-h period to avoid thermal shock of the organisms (Stewart et 145 

al. 2013a). Surface water temperature was then kept constant until the end of the experiment.  146 

 Three species density treatments, based on previous field surveys reporting G. pulex densities (Welton 147 

1979, Elliott 2005), were tested (n= 12 mesocosms per density). A low density treatment of 40 ind. mesocosm-1, 148 

corresponding to 815 ind. m-2, was used to represent density treatments having little or no intraspecific 149 

competition. Density was increased 3-fold to 120 ind. mesocosm-1 (2444 ind. m-2) to induce moderate levels of 150 

intraspecific competition (i.e., medium density). A high density treatment of 500 ind. mesocosm-1 (10 183 ind. 151 

m-2) was used to induce high levels of intraspecific competition. For each treatment, individuals were counted by 152 

hand before being transferred into mesocosms using a small-hand net at the start of the experiment.  153 

Proportion of individuals migrated into the hyporheic zone 154 

The proportion of individuals that migrated into the hyporheic zone was quantified after 15 days by separating 155 

the surface and hyporheic zones of the mesocosms. For this, mesocosms were placed into a 60 × 80 × 40 cm 156 

plastic wash basin, with care taken to avoid agitation of the surface water that may cause organisms to 157 

redistribute vertically. The hyporheic zone was isolated from the surface zone by removing the stainless steel 158 

bolts that attached the two parts of the mesocosm and rapidly sliding the surface zone into the large basin, 159 

leaving the hyporheic zone of the mesocosm undisturbed. During this process, the water level in the columns 160 

was maintained until the moment of separation to avoid incidental migration of organisms into hyporheic zone. 161 

Substrate from each section was then sieved (500 µm) separately to recover all individuals from their respective 162 

zone. 163 

Survival of organisms 164 

Upon collection, all individuals were placed in white sorting trays and visually inspected for any movement. 165 

Individuals that did not survive the experiment were counted and separated from living individuals so they were 166 

not used for assays of triglycerides and glycogen (see below). Because G. pulex is known to feed on its dead 167 

conspecies (MacNeil et al. 1997), individuals not found at the end of the experiment were presumed to be dead 168 

and consumed. Few individuals (<1%) appeared to be killed during the sampling effort (i.e. sieving); however, 169 
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these individuals could not be reliably separated from individuals that did not survive the experimental 170 

treatments. 171 

Measuring leaf consumption rate 172 

In each mesocosm, 220 ± 10 mg of alder leaves with primary veins removed, dried at 60°C for 24 hours, were 173 

enclosed in 15 × 6-cm plastic mesh (10 mm diameter) bags. This mesh size allowed G. pulex to enter the bags 174 

freely and consume leaf litter. Leaf litter was pre-conditioned by immersing in river water for 10 days to allow 175 

for microbial colonization (mainly aquatic hyphomycetes) and improve leaf palatability (Navel et al. 2010). 176 

After conditioning, one leaf litter bag was placed on the substrate surface of each mesocosm before the start of 177 

the experiment. Following the experiment, leaves were collected, dried at 60°C for 24 h and re-weighed. Leaf 178 

consumption rates (mg. ind.-1 day-1) were calculated as ((initial dry leaf mass)-(final dry leaf mass))/((# of 179 

individuals)*15 days). To correct final leaf mass consumption for leaching and microbial consumption not 180 

attributable to G. pulex, a temperature-specific correction factor was calculated based on the leaf mass loss in 181 

bags (n = 9) immersed in additional columns void of G. pulex for 15 days at each temperature level (Navel et al. 182 

2010). Consumption rates were calculated based on the initial number and also the final number of individuals 183 

per mesocosm to account for survivorship and ensure that analyses of water temperature and species density 184 

effects on consumption rate were not biased by the method of calculating consumption rate.    185 

Measuring triglycerides and glycogen contents 186 

For triglycerides and glycogen assays, individuals collected at the end of the experiment were dried using an 187 

absorbent cloth, freeze-dried and weighed in groups of 3‒4 individuals. Three replicate groups from each 188 

mesocosm were collected to establish mean triglycerides and glycogen contents. Groups were weighed (± 0.1 189 

mg) and then ground into powder with a small mortar in pre-weighed glass tubes. Triglycerides and glycogen 190 

(µmol.g-1 dry mass) were extracted using standard enzymatic methods with prepared solutions (Sigma-Aldrich, 191 

Saint-Quentin Fallavier, France) described in further detail in Hervant et al. (1995) and Salin et al. (2010). 192 

Assays were made using an Aquamate spectrophotometer (Thermo Scientific Inc., Waltham, MA, USA) at 25°C. 193 

Data analysis 194 

Differences in the mean proportion of G. pulex that migrated into the hyporheic zone, percent survivorship, leaf 195 

mass consumption rate and triglycerides and glycogen contents between treatments were tested using a two-196 

factor (two-way) analysis of variance (ANOVA). The design was a 3 (temperature levels: 15, 20, 25°C) × 3 197 
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(species density levels: low, medium, high) factorial design with interactions. Post hoc Tukey HSD multiple 198 

comparisons were used to compare mean levels within temperature and density treatment factors. Plotted 199 

residual variances and Levene’s test were used to check for homogeneity of variance and normality and 200 

subsequently all percentages were arc(√-x)-transformed and leaf mass consumption rates and triglycerides and 201 

glycogen content values were log10(x)-transformed to meet these assumptions. ANOVA and post hoc 202 

comparisons were made using R (version 3.1.1; R Project for Statistical Computing, Vienna, Austria). 203 

Results 204 

Effect of water temperature and species density on G. pulex migration into the hyporheic zone. 205 

The proportion of individuals that migrated into the hyporheic zone tended to increase as water temperature and 206 

species density increased (ANOVA, temperature effect: F2, 27 = 4.28, P = 0.024, density effect: F2, 27 = 11.354, P 207 

< 0.001; Table 1, Fig. 2). The proportion of organisms that migrated was higher in the 25°C treatments than at 208 

15°C (Tukey HSD, P = 0.030; Fig. 2), but not different than the proportion measured in the 20°C treatments. At 209 

high species density, the proportion of organisms that migrated was greater than in medium density (Tukey 210 

HSD, P = 0.003) and low density treatments (Tukey HSD, P < 0.001; Fig. 2). The effect of water temperature on 211 

the proportion of individuals that migrated did not increase at high density (ANOVA, temperature × density 212 

effect: F4, 27 = 1.65, P = 0.191; Table 1, Fig. 2).  213 

Effect of water temperature and species density on survival of G. pulex 214 

The proportion of organisms that survived the experiment decreased as water temperature increased and there 215 

was an interaction effect of water temperature and species density (ANOVA, temperature × density effect: F2, 27 216 

= 5.64, P = 0.002; Table 1, Table 2). The proportion of survival across low and medium densities was lowest at 217 

25°C compared to survival measured at 15 and 20°C (Tukey HSD, P < 0.001 for all), whereas survival in the 218 

high density treatment at 25°C differed from survival in the high density treatment at 15°C (Tukey HSD, P = 219 

0.02; Table 2) but not the high density treatment at 20°C. 220 

Effect of water temperature and species density on the leaf mass consumption rate of G. pulex. 221 

Leaf consumption rate of G. pulex based on the initial density was affected by water temperature, species density 222 

and their interaction (ANOVA, temperature × density effect: F2, 26 = 15.93, P < 0.001, Table 1, Fig. 3). 223 

Consumption rate in the 20°C and 25°C treatments was lowest at medium and high species densities compared 224 
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to low density (Tukey HSD, P < 0.001 for all) but at 15°C, different consumption rates were only detected 225 

between low and high density treatments (Tukey HSD, P < 0.001, Fig. 3). Similarly, consumption rate based on 226 

the final density was also affected by the interaction of water temperature and species density (results shown in 227 

Appendix SI). 228 

Triglycerides and glycogen contents of organisms using the hyporheic zone 229 

Mean triglycerides content did not differ among the levels of water temperature, species density nor by the 230 

interaction of these factors (Table 1). For mean glycogen content, the effect of water temperature was not 231 

consistent across different levels of species density (ANOVA, temperature × density effect: F4, 26 = 4.013, P = 232 

0.012; Table 1; Fig. 4). Glycogen content at high and medium densities was lower than glycogen content at low 233 

density in the 20°C treatment (Tukey HSD, P = 0.004 for both), whereas there was no difference in glycogen 234 

content among low, medium and high densities at 15°C.  235 

Discussion 236 

Influence of water temperature and species density on vertical migration into the hyporheic zone 237 

In agreement with our first prediction, both increasing water temperature and intraspecific competition led to the 238 

migration of G. pulex into the hyporheic zone. These findings imply hyporheic refuge use is an active process in 239 

which invertebrates use abiotic and biotic cues to avoid the harsh surface conditions that coincide with low flow, 240 

flow cessation and drying events. Water temperature above 20°C caused a higher proportion of individuals to use 241 

the hyporheic zone. This threshold closely matches the temperature (24°C) when G. pulex survival becomes 242 

drastically reduced in short-term (10 days) enclosed exposures (Foucreau et al. 2014). For intraspecific 243 

competition, a 3-fold increase in species density (2400 ind. m-2) led to a higher proportion of individuals using 244 

the hyporheic zone. In previous behavior experiments with G. pseudolimnaeus, Williams and Moore (1985) 245 

found a 3.5-fold increase in species density increased the number of individuals entering the substrate. Our 246 

results mirror those from two previous studies investigating hyporheic refuge use by invertebrates (Wood et al. 247 

2010, Stubbington et al. 2011). Wood et al. (2010) reported peak invertebrate densities in the hyporheic zone 248 

when surface water temperature around 20°C was reached in the Little Stour River, UK; whereas Stubbington et 249 

al. (2011) found the highest proportion of G. pulex in the hyporheic zone, relative to the surface, during a low-250 

flow period in the River Lathkill, UK, when the highest density (2449 ind. m-2) occurred. Our mesocosm 251 

approach complemented these field surveys by disentangling the individual and combined effects of water 252 
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temperature and intraspecific competition and identifying thresholds that will help predict the responses of 253 

invertebrates to low flow, flow cessation and river drying. 254 

 Biotic interactions (e.g., competition, predator-prey relationships) can intensify with increasing water 255 

temperature (Burnside et al. 2014), leading to unexpected responses of species in aquatic systems (Ormerod et al. 256 

2010). However, in this study, the effect intraspecific competition of G. pulex on the proportion of individuals 257 

that migrated into the hyporheic zone did not appear to increase when temperatures were increased up to 25°C 258 

(i.e., additive response). The absence of a synergistic response may be attributed to the behavior of G. pulex at 259 

temperatures above its thermal tolerance. At temperatures above its thermal tolerance, activity rates and 260 

metabolism can decrease sharply (e.g., Foucreau et al. 2014), which may have led to a decrease in conspecific 261 

encounters, hence, reducing competition (Wooster et al. 2011). Therefore, biotic interactions may increase with 262 

water temperature until the point when thermal tolerance is exceeded, which is between 21‒25°C for most 263 

aquatic invertebrates (Stewart et al. 2013a, Foucreau et al. 2014), and individuals reduce their activity in a final 264 

attempt to conserve energy and avoid death.  265 

 Our results, along with those from previous field studies (e.g., Wood et al. 2010, Stubbington et al. 266 

2011), bolster evidence that the hyporheic zone is an important refuge for riverine invertebrates avoiding 267 

increased water temperatures and biotic interactions. These results have important implications considering the 268 

projected global-scale increases in water temperatures and flow intermittence (Postel 2000, van Vliet et al. 2013, 269 

Datry et al. 2014). In particular, water stressed regions, such as the American Southwest, may see a 27% increase 270 

in the median number of days of flow cessation and a 15-day increase drying event duration by mid-century, 271 

respectively (Jaeger et al. 2014). Changes in flow regime will be coupled with average increases in global mean 272 

and maximum river water temperatures up to 1.6°C which will, in turn, increase evaporation and drying rates 273 

(van Vliet et al. 2013). If organisms can survive temporarily in the hyporheic zone and return to the surface when 274 

conditions become favorable, it is likely that, in at least some systems (e.g., alluvial rivers), the hyporheic zone 275 

can be the primary source of resilience for invertebrate communities (Vander Vorste et al. in review). 276 

 Future experiments may aim to test the effects of different abiotic and biotic factors that could also 277 

influence invertebrate use of the hyporheic zone. For example, dissolved oxygen saturation in receding river 278 

pools can be as low as 6% (e.g., Boulton 1989) and when coupled with high water temperatures will likely 279 

increase the negative effects on invertebrates and consequently, migration of invertebrates into the hyporheic 280 

zone would be strongly increased. Depth of the water table below the riverbed may also be an important factor 281 

limiting the colonization and return to surface for invertebrates (Vander Vorste et al. in review). Furthermore, 282 
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interspecific competition and predation often increase simultaneously in drying rivers (Lake 2003) and may 283 

trigger migration of invertebrates into the hyporheic zone (Stubbington 2012). Invertebrate migration into 284 

hyporheic zone may decrease predation risk from fish and large invertebrates (e.g., Fairchild and Holomuzki 285 

2005), and reduce top-down effects in river pools (Boersma et al. 2014). Finally, the direction of vertical 286 

hydraulic gradient (i.e., upwelling, downwelling) is likely an overriding physical force controlling vertical 287 

migration of invertebrates (Olsen and Townsend 2003, Capderrey et al. 2013, Mathers et al. 2014). In this study, 288 

the fact that mesocosms had slightly upwelling water strengthens evidence that G. pulex actively sought refuge 289 

in the hyporheic zone, rather than passively following the direction of water movement. In general, higher 290 

abundances of surface invertebrate are found in downwelling reaches (e.g., Dole-Olivier et al. 1997, Olsen and 291 

Townsend 2003, Capderrey et al. 2013), presumably aided by the downward movement of water. Therefore, it is 292 

expected that G. pulex would show a greater response to enter the hyporheic zone in downwelling river reaches. 293 

Although, vertical migration may have been related to the rheophilic nature of G. pulex or its ability to detect 294 

cooler temperatures in the upwelling water. Future mesocosm experiments can facilitate exploration into how 295 

these various factors will influence hyporheic zone use by invertebrates in drying rivers. 296 

Decreased survival, leaf litter consumption and energy stores  297 

In agreement with our second prediction, use of the hyporheic zone as a refuge had negative effects on survival, 298 

leaf litter consumption and energy stores of G. pulex. In this study, the hyporheic zone in mesocosms mimicked 299 

conditions in the natural streams, where the availability of food resources are generally limited and/or of poor 300 

quality (Burrell and Ledger 2003, Danger et al. 2012). Consequently, the low rates of survivorship (39 ± 7%; 301 

mean ± SD) and decreased glycogen content of G. pulex in high temperature treatments suggested that starvation 302 

could have become a factor during this 15-day experiment. Previous studies have shown surface invertebrates 303 

appear highly susceptible to mortality during periods of starvation (Hervant et al. 1997, 1999), especially 304 

compared to hypogean taxa. Therefore, food resources may be an important limiting factor that influences 305 

invertebrate survival in the hyporheic zone.  306 

 As a consequence of migration into the hyporheic zone, the processing of leaf litter by invertebrates on 307 

the riverbed may be substantially reduced during periods of low flow, flow cessation, and stream drying (Corti et 308 

al. 2011, Datry et al. 2011, Dehedin et al. 2013).  In this study, a 63 ± 7% reduction in leaf litter consumption per 309 

individual between 20 and 25°C suggested that G. pulex did not return to the surface to feed after entering the 310 

hyporheic zone. This result contrasts with recent studies suggesting that leaf litter decomposition will increase 311 
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with rising water temperatures due to enhanced microbial decomposition and invertebrate activity rates (e.g., 312 

Ferreira and Canhoto 2015, Mas-Martí et al. 2015). However, we argue that decomposition rates will be reduced 313 

when rising temperatures are coupled with contraction and drying of aquatic habitats and subsequent competition 314 

for resources due to the behavioral response of shredding invertebrates to enter the hyporheic zone. Implications 315 

of these findings are important considering G. pulex were responsible for an estimated 13% of leaf litter 316 

consumption in a wooded stream (Mathews 1967) and several other invertebrate shredders (e.g., Leuctridae, 317 

Leptoceridae) are known to use the hyporheic zone during disturbances (Stubbington 2012). An important next 318 

step will be to test if invertebrates are able to track diel water temperature changes, returning to the surface at 319 

night when surface temperatures are cooler to feed and how this may compensate for energy loss during the day.  320 

 River invertebrates face a tradeoff between tolerating harsh surface conditions versus avoiding them by 321 

entering the hyporheic zone, a strategy which may not be suitable for long-term survival. On one hand, lower 322 

water temperature, fewer conspecific interactions and the lack of large predators may entice invertebrates to 323 

migrate into the hyporheic zone during periods of low flow, flow cessation and drying. On the other hand, once 324 

in the hyporheic zone, food limitation, low oxygen concentration (Findlay 1995) and colmation (Descloux et al. 325 

2013), especially in rivers impacted by agricultural land use, will reduce the capacity of the hyporheic zone to 326 

provide refuge. Furthermore, competitive and predatory interactions with hypogean taxa (e.g., Schmid and 327 

Schmid-Arraya 1997) are likely to occur, although quantifiable evidence must be explored further. These 328 

interactions may have negative or positive effects on the resilience of surface invertebrates, depending on the 329 

outcome of these interactions. Therefore, the potential cascading effects of hyporheic zone refuge use by 330 

invertebrates remains an important research gap that could be addressed through mesocosm experiments. 331 

 332 

Conclusion 333 

There is a strong need to understand the influence of factors, such as water temperature and biotic interactions, 334 

that coincide with low flow, flow cessation and drying on river communities, especially considering global 335 

change will continue exacerbate their negative effects on river systems (Postel 2000, Datry et al. 2014, Jaeger et 336 

al. 2014). In many regions, once perennial rivers are now becoming intermittent (Datry et al. 2014), therefore 337 

future studies could explore how trait variability (Violle et al. 2012) and differences in physiological tolerance 338 

(Stoks et al. 2014) among populations from formally perennial and naturally intermittent rivers influence the 339 

response to increased temperature and biotic interactions. Although rare in freshwater ecology, the use of 340 

common garden experiments (i.e., simultaneously subjecting different populations to the same stressor) have 341 
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revealed strong inter-population differences in temperature tolerance within aquatic species (e.g., Foucreau et al. 342 

2014). Therefore, such approaches could be developed to explore the responses of populations from perennial 343 

and intermittent rivers to other environmental factors associated with river contraction and drying. These 344 

experiments will in turn help refine the predictions of population and community responses to global climate 345 

change and increased water abstraction.  346 
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Tables 547 

Table 1. Results from 2-way ANOVA testing the effect of temperature and species density and their 548 

interaction on dependent variables related to G. pulex. Percentages were arcsin(√-x)-transformed and leaf 549 

mass consumption rate, triglycerides and glycogen contents were log10(x)-transformed. 550 

Dependent variable Factor d.f. MSS F P 

% Migrated Temperature (T) 2 0.045 4.280 0.024 

 

Density (D) 2 0.119 11.354 <0.001 

  T × D 4 0.017 1.650 0.191 

% Survivorship Temperature (T) 2 0.343 65.869 <0.001 

 

Density (D) 2 0.008 1.559 0.229 

  T × D 4 0.029 5.640 0.002 

Leaf mass consumption Temperature (T) 2 1.975 38.091 <0.001 

 

Density (D) 2 1.087 15.120 <0.001 

  T × D 4 1.734 15.931 <0.001 

Triglycerides content Temperature (T) 2 0.959 0.727 0.493 

 

Density (D) 2 0.940 0.459 0.637 

  T × D 4 1.082 1.240 0.319 

Glycogen content Temperature (T) 2 2.869 2.461 0.105 

 

Density (D) 2 2.517 0.563 0.577 

  T × D 4 3.902 4.013 0.012 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Author-produced version of the article published in Aquatic Sciences, 2017, 79 (1), 45-55. 
The original publication is available at https://link.springer.com/article/10.1007/s00027-016-0478-z 

doi : 10.1007/s00027-016-0478-z 



22 

 

Table 2. Mean (± SD) percent survivorship of G. pulex in different temperature and species density 561 

treatment conditions after the 15-day experiment.  562 

Temperature Species density Mean Min. ‒ Max. 

 

low 61 ± 8 55 ‒ 73 

15°C medium 62 ± 8 54 ‒ 71 

  high 67 ± 6 58 ‒ 72 

 

low 79 ± 5 73 ‒ 85 

20°C medium 67 ± 4 62 ‒ 70 

  high 63 ± 3 59 ‒ 67 

 

low 34 ± 12 23 ‒ 48 

25°C medium 35 ± 2 33 ‒ 37 

  high 48 ± 7 42 ‒ 57 
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Figure Legends 567 

Figure 1. Experimental set-up of mesocosms (n = 36) used to test the effect of water temperature, species 568 

density and their interaction on the migration of G. pulex into the hyporheic zone. 569 

Figure 2. Mean (± SE) proportion (percent) of G. pulex that migrated into the hyporheic zone at different 570 

temperature and species density treatment conditions. Percent migrated into hyporheic zone is based on 571 

the initial species density. 572 

Figure 3. Mean (± SE) leaf mass consumption rate of G. pulex (mg. ind.-1 day-1) at different temperature 573 

and species density treatment conditions. Calculation based on initial species density. 574 

Figure 4. Mean (± 1 S.E) individual triglycerides (µmol.g-1 dry mass) (A) and glycogen content (µmol.g-1 575 

dry mass) (B) of G. pulex at different temperature and species density treatment conditions. 576 
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Figure 1. 590 
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Figure 2.  603 
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Figure 3.  607 
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Figure 4.  619 
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Appendix SI 626 

Results from 2-way ANOVA testing the effect of temperature and species density and their interaction on 627 

leaf mass consumption of G. pulex. Leaf mass consumption rate was log10(x)-transformed. Leaf mass 628 

consumption based on final number of individuals to account for survivorship though it was not possible 629 

to determine when organisms died during the experiment. 630 

Dependent variable Factor d.f. MSS F P 

Leaf mass consumption Temperature (T) 2 1.104 0.409 0.669 

 

Density (D) 2 1.920 9.943 <0.001 

  T × D 4 1.649 3.390 0.024 
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