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 Plant litter decomposition is a key regulator of nutrient recycling. In a given environment, decomposition of litter from a focal species depends on its litter quality and on the efficiency of local decomposers. Both may be strongly modified by functional traits of neighboring species, but consequences for decomposition of litter from the focal species remain unknown.

 We tested whether decomposition of a focal plant's litter is influenced by the functional-trait dissimilarity to the neighboring plants. We cultivated two grass species (Brachypodium pinnatum and Elytrigia repens) in experimental mesocosms with functionally similar and dissimilar neighborhoods, and reciprocally transplanted litter.

 For both species, litter quality increased in functionally dissimilar neighborhoods, partly due to changes in functional traits involved in plant-plant interactions. Furthermore, functional dissimilarity increased overall decomposer efficiency in one species, probably via complementarity effects.

 Our results suggest a novel mechanism of biodiversity effects on ecosystem functioning in grasslands: interspecific functional diversity within plant communities can enhance intraspecific contributions to litter decomposition. Thus, plant species might better perform in diverse communities by benefiting from higher remineralization rates of their own litter.

INTRODUCTION

Plant-litter decomposition is one of the largest terrestrial carbon fluxes and a key regulator of nutrient cycling in ecosystems. For instance, in grasslands ecosystems, litter decomposition is crucial to maintain or restore ecosystem services such as soil fertility and productivity. Under a given set of abiotic conditions, the decomposition of the litter produced by a given plant ("focal plant" from here on) depends on two main parameters: the litter quality of the plant [START_REF] Coûteaux | Litter decomposition, climate and liter quality[END_REF][START_REF] Cornelissen | Functional leaf attributes predict litter decomposition rate in herbaceous plants[END_REF][START_REF] Cornelissen | Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents[END_REF][START_REF] Makkonen | Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient[END_REF], and the efficiency of the surrounding decomposer community (detritivore fauna, decomposing fungi and bacteria: [START_REF] Petersen | A comparative analysis of soil fauna populations and their role in decomposition processes[END_REF][START_REF] Coûteaux | Litter decomposition, climate and liter quality[END_REF][START_REF] Bardgett | Belowground biodiversity and ecosystem functioning[END_REF]. Litter quality corresponds to nutritional value and digestibility for decomposers. Litter quality is controlled by after-life traits of the focal plant, typically increasing with high specific leaf area (SLA: [START_REF] Santiago | Extending the leaf economics spectrum to decomposition: evidence from a tropical forest[END_REF] or with low C:N ratio [START_REF] Quested | Plant traits relate to whole-community litter quality and decomposition following land use change[END_REF][START_REF] Bakker | Leaf economics traits predict litter decomposition of tropical plants and differ among land use types[END_REF]. The efficiency of the decomposer community corresponds to mass loss of litter of a given quality, and reflects the abundance of decomposers and their specific capacities to handle and digest litter [START_REF] Petersen | A comparative analysis of soil fauna populations and their role in decomposition processes[END_REF][START_REF] Hättenschwiler | Soil animals alter plant litter diversity effects on decomposition[END_REF][START_REF] Güsewell | N: P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms[END_REF]. The focal plant influences the decomposer efficiency via its litter quality, root exudates [START_REF] Paterson | Importance of rhizodeposition in the coupling of plant and microbial productivity[END_REF][START_REF] Kuzyakov | Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature[END_REF], and associated microbial communities (e.g. mycorrhizal fungi: [START_REF] Lindahl | Ectomycorrhizal fungi -potential organic matter decomposers, yet not saprotrophs[END_REF][START_REF] Soudzilovskaia | Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling[END_REF]. But most plants do not grow in isolation, and are surrounded by plant neighbors.

Interactions with plant neighbors can influence litter quality of a focal plant and its decomposer community: interactions with neighbors influence the focal plant's traits [START_REF] Novoplansky | Picking battles wisely: plant behaviour under competition[END_REF][START_REF] Violle | Competition, traits and resource depletion in plant communities[END_REF] and litter, root exudates and mycorrhizal fungi from neighboring plants control the decomposer community below the focal plant [START_REF] Meier | Links between plant litter chemistry, species diversity, and belowground ecosystem function[END_REF][START_REF] Butenschoen | Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity[END_REF]Fernandez & Kennedy, 2016). Neighborhoods may therefore modulate both of the major controls of litter decomposition for a focal plant. Specifically, plant neighbors may impact afterlife traits of a focal plant, mainly through competition [START_REF] Jackson | Geostatistical patterns of soil heterogeneity around individual perennial plants[END_REF][START_REF] Violle | Competition, traits and resource depletion in plant communities[END_REF] and sharing of enemies [START_REF] Janzen | Herbivores and the number of tree species in tropical forests[END_REF][START_REF] Yguel | Phytophagy on phylogenetically isolated trees: why hosts should escape their relatives[END_REF] neighbors' above-ground effect, Fig. 1). Such impacts may depend on the neighbors' traits and their similarity with the traits of the focal plant [START_REF] Mcgill | Rebuilding community ecology from functional traits[END_REF]. For instance, according to the limiting similarity theory [START_REF] Macarthur | The limiting similarity, convergence, and divergence of coexisting species[END_REF][START_REF] Schwilk | Limiting similarity and functional diversity along environmental gradients[END_REF], a focal plant with dissimilar neighbors will compete less for light and soil nutrients. A focal plant with dissimilar neighbors will also suffer from less enemy pressure than with similar ones, if enemies prefer high resource concentration [START_REF] Janzen | Herbivores and the number of tree species in tropical forests[END_REF][START_REF] Yguel | Phytophagy on phylogenetically isolated trees: why hosts should escape their relatives[END_REF]. In such dissimilar neighborhoods, a focal plant may then perform better and show changes in resource acquisition traits, specifically higher SLA, as well as lower C:N ratio and LDMC (leaf dry matter content; [START_REF] Violle | Let the concept of trait be functional![END_REF][START_REF] Violle | Competition, traits and resource depletion in plant communities[END_REF]. A focal A c c e p t e d m a n u s c r i p t plant may also respond to lower enemy pressure by decreasing its leaf toughness [START_REF] Massey | Neighbourhood composition determines growth, architecture and herbivory in tropical rain forest tree seedlings[END_REF]. All these trait changes in living plants are known to increase litter quality, since litter decomposition increases with high SLA [START_REF] Santiago | Extending the leaf economics spectrum to decomposition: evidence from a tropical forest[END_REF], low C:N ratio [START_REF] Wedderburn | Litter decomposition by four functional tree types for use in silvopastoral systems[END_REF], low LDMC [START_REF] Quested | Plant traits relate to whole-community litter quality and decomposition following land use change[END_REF], and low leaf toughness [START_REF] Pérez-Harguindeguy | Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina[END_REF].

Nevertheless, to our knowledge, no study have demonstrated whether functional dissimilarity to plant neighborhood ultimately affects decomposition of a focal-plant's litter via changes in its functional traits. We hypothesize that functional dissimilarity to neighborhood increases the litter quality of a focal plant.

Plant neighbors may also affect the decomposer community below a focal plant in multiple ways (neighbors's below-ground effect, Fig. 1). Neighborhoods composed of functionally dissimilar species result in a functionally diverse litter mixture [START_REF] Butenschoen | Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity[END_REF] which, according to the resource complementarity hypothesis [START_REF] Loreau | Biodiversity and ecosystem functioning: current knowledge and future challenges[END_REF][START_REF] Gessner | Diversity meets decomposition[END_REF][START_REF] Tardif | The relationship between functional dispersion of mixed-species leaf litter mixtures and species' interactions during decomposition[END_REF], may stimulate abundance, activity, and hence efficiency of decomposers. A dissimilar mixture may also increase nitrogen transfer between litter species [START_REF] Handa | Consequences of biodiversity loss for litter decomposition across biomes[END_REF], which may increase decomposer efficiency. Alternatively, a functionally dissimilar litter mixture might result in dilution of high-quality litter sources, reducing decomposer efficiency since many decomposers may be specialist and have distinct litter preferences (home-field advantage; [START_REF] Ayres | Home-field advantage accelerates leaf litter decomposition in forests[END_REF][START_REF] Freschet | Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis[END_REF][START_REF] Austin | There's no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems[END_REF][START_REF] Pan | Larger phylogenetic distances in litter mixtures: lower microbial biomass and higher C/N ratios but equal mass loss[END_REF][START_REF] Veen | Litter quality and environmental controls of home-field advantage effects on litter decomposition[END_REF]. Dissimilar plant neighbors can additionally produce a wide range of root exudates, thereby increasing decomposer efficiency [START_REF] Paterson | Importance of rhizodeposition in the coupling of plant and microbial productivity[END_REF][START_REF] Kuzyakov | Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature[END_REF] for root litter). Finally, dissimilar plant neighbors can increase soil resource availability and trigger less competitive interactions between mycorrhizal and decomposing fungi (Gadgil effect;Fernandez & Kennedy, 2016), increasing overall decomposer efficiency. However, it remains unknown whether functional dissimilarity to plant neighborhood finally affects the efficiency of the decomposer community to decompose a focal-plant's litter.

Overall, we hypothesize that functional dissimilarity to neighborhood increases the efficiency of the decomposer community.

Here we tested how the functional dissimilarity between a focal plant and neighboring plants influences the litter decomposition of the focal plant. We hypothesized that (i) functional dissimilarity to plant neighborhood drives functional traits thereby increasing litter quality and (ii) functional dissimilarity to plant neighborhood increases decomposer efficiency. We considered two grassland focal species, Elytrigia repens (L.) and Brachypodium pinnatum (L.), which we cultivated in a large scale experiment including plant communities in semi-controlled mixtures along a gradient of increasing functional dissimilarity between the focal plant and its plant neighborhood. We maintained the experiment for five years, giving time for focal species to respond to their neighbors, A c c e p t e d m a n u s c r i p t and the experiment included twelve neighboring species. We performed a reciprocal litter transplant experiment to partition the effect of plant neighborhood on litter decomposition mediated only via litter quality and only via decomposer efficiency.

MATERIAL & METHODS

Studied species and neighborhood composition

We conducted this study in the experimental garden of the University of Rennes 1 (Western France, 48°06'58.6"N 1°38'15.5"W). The experiment was setup in 2009 and consisted of 120 mesocosms of 1.30 x 1.30 m containing 12 different mixtures of grassland species replicated 10 times (see [START_REF] Benot | Fine-scale spatial patterns in grassland communities depend on species clonal dispersal ability and interactions with neighbours[END_REF] for more details on the experimental design). Mesocosms were mowed yearly, and plant material was exported, in order to mimic the classical management practice applied in semi-natural grasslands. Mixtures had four levels of species richness (1 = monoculture, 4, 8, 12) and three distinct specific compositions for each level of species richness. Functional dissimilarity of mixtures depends a lot on the moconotyledon:dicotyledon ratio, and the ratio of mixtures -3:1, except monocultureswas very similar to the ratio that can be found in a great variety of grassland ecosystems in the study region (hayfields, pastures). Functional dissimilarity of mixtures was hence in line with functional dissimilarity that can be found in such ecosystems. Species used in mixtures were sampled from different sites around the region to maximize intraspecific variation. Among the 10 replicates of each mixture, relative abundances of species varied strongly so that local plant neighborhood was never identical, except for monocultures. Species were Agrostis stolonifera (L.), Agrostis tenuis (L.), Brachypodium pinnatum, Centaurea nigra (L.), Chamaemelum nobile (L.), Dactylis glomerata (L.), Elytrigia repens, Festuca rubra (L.), Holcus lanatus (L.), Holcus mollis (L.), Lolium perenne (L.) and Ranunculus repens (L.).

We selected two Poaceae species as focal species: Brachypodium pinnatum and Elytrigia repens.

These grassland species are present throughout Europe in a wide range of ecosystems and habitats.

Both have a C3 photosynthetic pathway [START_REF] Osborne | A global database of C4 photosynthesis in grasses[END_REF], and both are clonal but differ in clonal growth strategy with a Phalanx type for B. pinnatum and a Guerilla type for E. repens (sensu [START_REF] Doust | Population dynamics and local specialization in a clonal perennial (Ranunculus repens): I. The dynamics of ramets in contrasting habitats[END_REF]. For both focal species, we selected six mixtures, one monoculture and five polycultures, with ten replicates each. We selected a single focal plant growing in the center of each of the 60 selected mixtures. Because of variation in both presence and abundance of neighboring species and variation in functional traits of neighboring species, the 60 replicate focal plants of each focal species were positioned along a continuous gradient of functional distance to their plant neighborhood. To characterize plant composition in the neighborhood of focal plants, we mapped plant species distribution in each mesocosm in early spring 2014 (to test for ongoing impacts of neighbors on focal plants) and in 2010 and 2012 (to test for selection of focal-plant phenotypes by past neighbors). We mapped plant species distribution with an 80 x 80 cm square grid with a 5-cm cell size (256 cells per grid) positioned in the middle of each mesocosm. The presence of all rooted species was noted for each cell. Neighborhood composition was quantified for each focal plant by georeferencing its position within the grid and then calculating the number of cells occupied per each neighboring species around the focal plant. We quantified neighborhood at three different radii (10 cm, 20 cm and 30 cm) because a focal plant may respond to its local neighborhood at different distances depending on the trait considered [START_REF] Bittebière | Plant traits respond to the competitive neighbourhood at different spatial and temporal scales[END_REF]. These calculations were carried out with GIS (ArcGIS 10.1, ESRI).

Functional dissimilarity between focal plant and its plant neighborhood

We quantified the functional dissimilarity between each of the two focal species and their neighboring species using trait measurements done on individuals grown in controlled pots in isolation, to obtain basal trait values independent of neighborhood composition. On ten individuals of each species in the experiment, we measured eight functional traits which are important drivers of plant-plant interactions and represent above-ground and below-ground strategies of species to respond to abiotic and biotic conditions: specific leaf area (SLA), leaf dry matter content (LDMC), mass allocation to ramets, mass allocation to flowers, mass allocation to roots (in percentage of total dry mass), total dry mass, ramet height and spacer length. We also included the duration of flowering in our data, obtained from the BiolFlor database [START_REF] Kühn | BiolFlor: a new plant-trait database as a tool for plant invasion ecology[END_REF]. All these traits mainly illustrate how neighbors allocate resources and hence compete for light and soil resources with the focal plant [START_REF] Violle | Let the concept of trait be functional![END_REF][START_REF] Violle | Competition, traits and resource depletion in plant communities[END_REF]. For instance, a neighboring plant allocating more resources than the focal plant to sexual reproduction (production of flowers and duration of flowering) hence allocates less resources to growth of vegetative organs (production of roots and ramets, ramet height, spacer lenght, SLA) and may then less compete for light and soil resources with the focal plant. SLA and LDMC of plant neighbors also determine the dissimilarity between neighbors' litter and litter from the focal plant, which may drive the complementarity of litter-mixture resources [START_REF] Loreau | Biodiversity and ecosystem functioning: current knowledge and future challenges[END_REF][START_REF] Gessner | Diversity meets decomposition[END_REF]. All traits were measured following the protocols of [START_REF] Pérez-Harguindeguy | New handbook for standardised measurement of plant functional traits worldwide[END_REF]. We averaged the ten replicates for each species and each trait.

For each focal plant, we quantified the functional dissimilarity to its plant neighborhood as the mean Euclidian distance between the focal plant and each neighboring species in 9-dimensional space with an axis for each trait [START_REF] Villéger | New multidimensional functional diversity indices for a multifaceted framework in functional ecology[END_REF]. Traits data were standardized to give similar weight to each trait in the multi-dimensional space. This approach has the advantage of not reducing information by an initial ordination, which was unnecessary since traits were not overly correlated A c c e p t e d m a n u s c r i p t (the range of correlation were from -0.71 to 0.51, with an absolute value mean and median of respectively 0.35 and 0.32). We calculated the abundance-weighted mean functional dissimilarity between each focal plant and its plant neighborhood as:

𝐷 = ∑(𝛼 𝑖 × 𝛽 𝑖 ) ∑(𝛼 𝑖 )
Where αi is the abundance of the neighboring species i, and βi is the Euclidian distance between the species i and the focal plant in the multi-dimensional space. This mean functional dissimilarity was calculated for the three different radii of neighborhood around each focal plant, at the three dates (2010, 2012 and 2014).

Focal-plant trait measurements

We evaluated trait responses of the two focal species to their different plant neighborhoods by measuring four green-leaf traits and two dead-leaf traits well known to impact litter quality [START_REF] Quested | Plant traits relate to whole-community litter quality and decomposition following land use change[END_REF][START_REF] Santiago | Extending the leaf economics spectrum to decomposition: evidence from a tropical forest[END_REF] and being potentially responsive to resource competition and enemy pressure [START_REF] Novoplansky | Picking battles wisely: plant behaviour under competition[END_REF][START_REF] Violle | Competition, traits and resource depletion in plant communities[END_REF]. On green leaves, we measured SLA, LDMC, On air-dried dead leaves we measured C:N ratio and leaf toughness. We considered entirely senesced leaves from the focal plant as dead leaves. C:N ratio was measured using an elemental analyzer (FLASH EA 1112 Thermo Finnigan). Leaf toughness was measured following the protocol of Foucreau et al. (2013). We selected leaves of similar size for all focal plants and used a penetrometer applying a thrust of 3 mm.min -1 on a flat head drill positioned on the leaf. Leaf toughness was calculated as the average maximum effort (in Newton) necessary to pierce the leaf (three points per leaf).

Litter decomposition

The decomposition of a focal-plant's litter right underneath this focal plant results from the effect of plant neighborhood on (1) litter quality and (2) decomposer efficiency. In order to disentangle the two effects, we used a litter transplant experiment. We assumed that the litter quality of focal plants grown in monocultures (i.e. with conspecific neighbors) was not affected by any effect of functional dissimilarity to neighborhood, as functional dissimilarity was there strictly equal to zero. Similarly, we assumed that the decomposer community located in monocultures was not affected by any effect of we were able to evaluate how functional dissimilarity to neighborhood affects litter decomposition via the decomposer community alone. The assigning of a litterbag originating from a monoculture to a particular polyculture was made at random, as was the assigning of a litterbag originating from a polyculture to a particular monoculture. We also placed below each focal plant a litterbag filled with its own litter, combining the two effects of neighborhood on litter decomposition. Thus, we placed six litterbags below each focal plant grown in monoculture treatments: one from the focal plant and five from each of the five polyculture treatments. We placed two litterbags below each focal plant grown in polyculture treatments: one from the focal plant and one from a monoculture treatment.

We used naturally-senesced litter collected from one to several ramets of the focal plant. As ramets are plastic and are the focal-plant organs that might respond to neighborhood, we collected litter from on to several very close ramets of focal plant, all sharing the same plant neighborhood.

Thereby, we avoided confounding different levels of phenotypic responses to plant neighborhood.

Litter was air-dried, and placed into 8 x 8 cm mesh bags. Litterbags had 2 mm mesh on their lower side to avoid losing small fragments of litter, and 5 mm mesh on their upper side to allow decomposers to freely access the litter. Each litterbag contained 1g of litter, oven-dry equivalent (airdry/oven-dry ratio calculated from subsamples exposed to oven-dried but not exposed to decomposition).

We started the decomposition experiment in December, 2013 and litterbags were collected when they reached 30-60% mass loss -four months later for E. repens and five months later for B.

pinnatum. High decomposition during this period of exposure results from the humid and relatively warm climate in winter, leading to high decomposer activity. We measured litter mass loss after the time of exposure as a proxy of litter decomposition. Mass loss was measured on all samples after cleaning the litter, oven-dried at 65°C for three days. Mass loss (%) was calculated as (m1/m0)*100, where m0 is the initial oven-dry equivalent dry weight and m1 the oven-dry weight at collection.

We also measured litter microbial biomass for a subset of 45 litter samples at the end of time of exposure to quantify colonization of litter by microorganisms. Because we could not analyze all litters, we selected this subset to be representative of the range of litter quality of all samples (mainly the range of SLA, LDMC and C:N ratio). The litter samples were incubated at 22°C for one day in polyethylene bags with gas exchange filled with moist filter paper to standardized water content.

A c c e p t e d m a n u s c r i p t

The litter was cleaned and then cut into pieces. Microbial biomass C of approximately 0.15g litter (fresh weight) was measured using an O2 micro compensation apparatus [START_REF] Scheu | Automated measurement of the respiratory response of soil microcompartments: Active microbial biomass in earthworm faeces[END_REF]. Substrate induced respiration was calculated from the respiratory response to D-glucose for 10h at 22°C to measure total microbial biomass colonizing the litter, including microbes that are inactive at the time of sampling [START_REF] Anderson | A physiological method for the quantitative measurement of microbial biomass in soils[END_REF]. Glucose was added to saturate the catabolic enzymes of microorganisms (80mg.g -1 litter dry weight dissolved in 2ml deionised water). The mean of the lowest three readings within the first 6h was taken as maximum initial respiration (MIRR: ml O2.g -1 litter dry weight h -1 ) and microbial biomass (μg Cmic.g -1 litter dry weight) was calculated as 38×MIRR [START_REF] Beck | An interlaboratory comparison of ten different ways of measuring soil microbial biomass C[END_REF]. We note that glucose addition over a short period might weakly stimulate arbuscular mycorrhizal fungi, but they are likely absent or rare in above-ground litter. Microbial activity (basal respiration; mg O2.h -1 .g -1 litter dry weight) was determined without glucose addition as the mean respiration rate after 15 to 24h. Glucose addition increased respiration by a factor 50 or more, and hence stimulated many decomposer organisms. Microbial biomass correlated positively to litter mass loss (P=0.009 and r²=0.13 for B. pinnatum, and P=0.003 and r²=0.16 for E. repens).

Statistical analyzes

First, we used linear simple ordinary least squares (OLS) regression models to test the effect of functional dissimilarity to neighborhood on the six functional traits measured on focal plants (SLA, LDMC, fungal attack, senescent area, C:N ratio, leaf toughness). We used a simple linear model describing trait data as a function of functional dissimilarity to neighborhood, neighborhood being characterized for each of three radii (10 cm, 20 cm, 30 cm) for each of three years (2010, 2012, 2014, i.e. nine models in total for each trait). We used centered-reduced data, i.e. variables transformed by subtracting their mean and dividing by their standard deviation, as it ensures that regression coefficients are comparable among models. For each trait, we selected the most probable model based on the R² and Akaike's information criterion, corrected for small sample sizes (AICc: [START_REF] Burnham | Model selection and multimodel inference: a practical informationtheoretic approach[END_REF]. Here and in all further analyzes we graphically explored residuals using probability plots and predicted vs residual plots, to verify whether residuals approached normality and homogeneity. To fulfill the assumption of normality we log-transformed (before scaling) data of

B. pinnatum.

Second, we used linear multiple OLS regression models to test the effect of the six functional traits of focal plants on (i) mass loss and (ii) microbial biomass. For each of these two dependent variables, the initial model included all explanatory variables (i.e. the six focal-plant's traits), and all variables were also centered-reduced. The model was optimized using a backward stepwise selection procedure of explanatory variables, and the best model was selected based on AIC criterion A c c e p t e d m a n u s c r i p t [START_REF] Burnham | Model selection and multimodel inference: a practical informationtheoretic approach[END_REF]. Comparing this to the previous analyzes, we identified which traits of focal plants were both, significantly influenced by functional dissimilarity to neighborhood and significantly influencing mass loss or microbial biomass. For these traits, we then performed a path analysis [START_REF] Wright | The method of path coefficients[END_REF] to calculate how functional dissimilarity to neighborhood indirectly affected mass loss or microbial biomass via these traits. We calculated a compound path by multiplying the standardized regression coefficient of the model relating (i) functional dissimilarity to neighborhood to focal plant functional traits with that of the model relating (ii) focal plant functional trait to either mass loss or microbial biomass. Compound paths therefore indicate the trait-mediated influence (sign and magnitude) of functional dissimilarity to neighborhood on litter mass loss or microbial biomass.

Third, we used simple linear OLS regression models to test the effect of functional dissimilarity to neighborhood on litter mass loss and microbial biomass. We considered litters transplanted from heterospecific neighborhoods to monocultures and litters transplanted from monocultures to heterospecific neighborhoods (except for microbial biomass due to insufficient sample size, n=4). As explained above (see first paragraph of Litter transplantation experiment), the former reflects the effect of functional dissimilarity to neighborhood mediated via litter quality, and the latter reflects the effect mediated via decomposer efficiency. We also considered non-transplanted litters, reflecting the combined effects of litter quality and decomposer efficiency. Again, neighborhoods were characterized for each of the three radii for each of the three years, resulting in nine analyzes per litter type and dependent variable. All models were compared based on AICc to select the most parsimonious one.

Finally, we explored the degree to which the litter-mediated effect of functional dissimilarity to neighborhood on litter decomposition could be explained by the functional traits we measured.

Litter-mediated effect was quantified as explained in the last paragraph; effects mediated by measured traits as compound paths were quantified as explained in the penultimate paragraph. For both mass loss and microbial biomass, we compared litter-mediated effect and effects mediated by measured traits.

In order to verify that the effect of functional dissimilarity was not due to a single species [START_REF] Wardle | The influence of plant litter diversity on decomposer abundance and diversity[END_REF][START_REF] Hoorens | Neighbour identity hardly affects litter-mixture effects on decomposition rates of New Zealand forest species[END_REF], we also tested relationships between the dependent variables and abundances of each species in the experiment. We found that these relationships were rarely significant and always weaker than the relationship with functional dissimilarity. We also included the neighboring species richness in our models to explain functional traits and litter mass loss, but functional dissimilarity was always a more powerful predictor and species richness was excluded 

RESULTS

Past neighborhoods (2010,2012) were not significant in any analyzes, except a weak increase of the SLA of E. repens in response to functional dissimilarity to neighborhood in a 20 cm radius in 2010 (P=0.03, r²=0.09, F=5.07). Therefore, we only present results of models based on present neighborhoods. We also only present results of models of a single neighborhood radius, which is the radius yielding the strongest relationship. Nevertheless, note that different radii led to similar conclusions regarding relationship sign in all cases and significance in most cases (Tab. S1).

Functional dissimilarity to neighborhood affects functional traits of focal plants

In B. pinnatum, functional dissimilarity to neighborhood significantly increased SLA, from around 25 to 35 mm²/mg, and also increased fungal attack, from 0 to 10% of foliar surface. Functional dissimilarity to neighborhood strongly decreased C:N ratio, from around 80 to 40, and also decreased senescent area, from 10 to 0% of foliar surface (Tab. 1, 0.11 ≤ r² ≤ 0.34). LDMC (340 mg/g in mean)

and leaf toughness (6 Newton in mean) remained unchanged. In E. repens, functional dissimilarity to neighborhood strongly increased C:N ratio, from 30 to 50, and decreased fungal attack from 20 to 5%, leaf toughness from around 10 to 6 Newton, and senescent area from 10 to 0% (Tab. 1, 0.21 ≤ r² ≤ 0.55). LDMC (330 mg/g in mean) and SLA (23 mm²/mg in mean) remained unchanged. The most pertinent neighborhood scales varied from 10 cm to 30 cm, with overall larger scales for E. repens than for B. pinnatum. We note that neighborhood might control fungal attack not only directly, but also indirectly through the effect of neighborhood on nutritional quality of focal plants for enemies [START_REF] Solomon | The nutrient supply of pathogenic fungi; a fertile field for study[END_REF][START_REF] Neumann | Nitrogen per unit leaf area affects the upper asymptote of Puccinia striiformis f. sp. tritici epidemics in winter wheat[END_REF]. However, we found no relationship between fungal attack and an important indicator of nutritional quality of leaves, C:N ratio (df=47, r²=-0.01, P=0.47 for B. pinnatum and df=57, r²=-0.01, P=0.48 for E. repens).

Functional traits affect mass loss and microbial biomass

In B. pinnatum, the increase in litter C:N decreased litter mass loss (Tab. 2, Fig. 2 and Fig. S1 A,B). 

Functional dissimilarity to neighborhood accelerates litter-mass loss via both improved litter quality and improved decomposer efficiency

In both species, functional dissimilarity to neighborhood significantly increased litter-mass loss, by more than 100% ("overall effect", r 2 =0.47 and 0.13, Fig. 3 A ,D and Tab. 3). This increase was continuous and did not depend only on the difference between monocultures and polycultures (removing monocultures from the models did not impact significance nor magnitude of the results).

In B. pinnatum, this increase in litter-mass loss was mediated by both litter quality (r 2 =0.15, Fig. pinnatum amounted to a standardized regression coefficient of 0.44, so it was only partly explained by the measured functional traits, notably by a decrease in litter C:N (standardized compound path coefficient of 0.22, see above). In E. repens, the increase of litter mass loss in functionally dissimilar neighborhoods was weaker than in B. pinnatum and was only mediated by litter quality (r 2 =0.11, Fig.

3 E, F and Tab. 3). None of the measured traits could explain this litter-quality effect (see above). In both focal species, microbial biomass did not respond to any effect of functional dissimilarity to neighborhood, which is consistent with the absence of effects of neighborhood on functional traits driving microbial biomass in B. pinnatum, but inconsistent with the existence of such effects in E.

repens.

DISCUSSION

We demonstrated that a functionally dissimilar neighborhood strongly increased litter decomposition for both B. pinnatum and E. repens. Notably, the litter produced in functionally dissimilar neighborhoods lost mass faster than litter produced in functionally similar neighborhoods. In B.

pinnatum, this increase of litter quality was partly explained by a decrease of litter C:N ratio in response to functional dissimilarity to neighborhood. In E. repens, none of the measured functional traits could explain the increase of litter quality. In addition to this above-ground effect via litter quality, we found, in B. pinnatum, a below-ground effect: decomposers were more efficient in functionally dissimilar neighborhoods.

Functional dissimilarity to neighborhood affects plant functional traits

The functional traits of both focal species responded to functional dissimilarity to neighborhood. In B.

pinnatum, litter C:N ratio decreased in functionally dissimilar neighborhoods. This decrease could be explained by a decrease of soil C:N ratio in such neighborhoods (see Fig. S2) since our plots were yearly mowed and soil conditions were hence the cause rather than the consequence of litter traits.

One possible explanation is that in such dissimilar neighborhoods, B. pinnatum may have been competitively superior to its neighbors, as indicated by increased SLA. Competitive superiority likely A c c e p t e d m a n u s c r i p t permits increased nitrogen uptake compared to neighbors, specifically in B. pinnatum which is a species that takes up nitrogen more efficiently than many other species in our experiment [START_REF] Bonanomi | Short-term effects of nitrogen enrichment, litter removal and cutting on a Mediterranean grassland[END_REF][START_REF] Holub | The effect of nitrogen addition on biomass production and competition in three expansive tall grasses[END_REF]. Then, in such neighborhoods, mowing decreased nitrogen export in comparison to similar neighborhoods. However, only a small part of the decrease of litter C:N ratio could be explained by this decrease of soil C:N ratio. An additional mechanism might be a decline in competitive pressure in dissimilar neighborhoods that in turn decreased nitrogen resorption during senescence. Overall, B. pinnatum may have suffered less from competition in functionally dissimilar neighborhoods. Conversely, litter C:N ratio of E. repens increased in functionally dissimilar neighborhoods. In such dissimilar neighborhoods, soil C:N ratio did not change (see Fig. S2). The increase of litter C:N ratio might instead be due to increased nitrogen resorption during senescence, because focal plants used nitrogen more efficiently to respond to a stronger competitive situation. Overall, E. repens might have suffered more from competition in dissimilar neighborhoods. Moreover, the focal species showed opposite responses also concerning fungal attack and leaf toughness. In B. pinnatum, leaves were more attacked in functionally dissimilar neighborhoods, suggesting enemies were probably generalists taking advantage of complementary resources (see [START_REF] Wahl | Associational resistance and shared doom: effects of epibiosis on herbivory[END_REF][START_REF] Barbosa | Associational resistance and associational susceptibility: having right or wrong neighbors[END_REF]. In contrast, leaves of E. repens were less attacked in functionally dissimilar neighborhoods, and their toughness decreased. This result suggests that this species might face mainly specialist enemies suffering from preferential resource dilution. Therefore, the two focal species responded in opposite ways for traits involved in competition and defense.

Plant traits in functionally dissimilar neighborhoods make litter more decomposable

Despite opposite trait responses to neighbors, litter quality of both species strongly increased in functionally dissimilar neighborhoods. This result show that similar effects of plant species on litter decomposition can result from different trait-mediated mechanisms. In B. pinnatum, the increase of litter quality was partly explained by a decrease of litter C:N ratio. This result is consistent with previous studies assessing the positive role of low C:N in the litter decomposition process, because litter decomposition is often nitrogen limited [START_REF] Wedderburn | Litter decomposition by four functional tree types for use in silvopastoral systems[END_REF][START_REF] Quested | Plant traits relate to whole-community litter quality and decomposition following land use change[END_REF]. In E. repens, none of the measured functional traits could explain the increase of litter quality. This increase might therefore be entirely due to non-measured traits. We may hypothesize that functionally dissimilar neighbors competed less with focal plants and improved nutrient status of litter from focal plants, as well as tissue quality. Specifically, functionally dissimilar neighbors might have increased focal-plant litter nutrient concentration, for example [K], [Mg] or [P] [START_REF] Santiago | Extending the leaf economics spectrum to decomposition: evidence from a tropical forest[END_REF][START_REF] Makkonen | Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient[END_REF]. They might also have decreased the ratio between recalcitrant C and nutrients, such as lignin:P and lignin:N ratios [START_REF] Wedderburn | Litter decomposition by four functional tree types for use in silvopastoral systems[END_REF][START_REF] Güsewell | N: P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms[END_REF] A c c e p t e d m a n u s c r i p t 2009). Overall, in both focal species, litter quality increased in functionally dissimilar neighborhoods due to different changes in afterlife traits. However, the afterlife traits we measured only partly explained the increase in litter quality.

In neither of the focal species did microbial biomass respond to functional dissimilarity to neighborhood. This lack of effect might simply be a consequence of insufficient statistical power of our approach, given the somewhat limited subsample. However, the lack of effect might also be real.

In particular, for B. pinnatum, neighborhoods did not affect afterlife traits that affected microbial biomass. In contrast, in E. repens, the lack of effect of functional dissimilarity to neighborhood on microbial biomass remains surprising. We expected a strong effect, since functionally dissimilar neighbors increased litter C:N and decreased senescence, both of which decreased microbial biomass (consistent with [START_REF] Eiland | Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw[END_REF][START_REF] Güsewell | N: P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms[END_REF][START_REF] Güsewell | N: P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms[END_REF][START_REF] Chapman | Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesis[END_REF]. We can only speculate that other non-measured traits compensated the effects of C:N ratio and senescent area. Finally, we note that dissimilar neighborhoods affected mass loss and that, in our experiment, mass loss was primarily driven by microbes. It is therefore possible that a functionally dissimilar neighborhood increased microbial capacities rather than sheer biomass.

Decomposers in functionally dissimilar neighborhoods can be more efficient

The decomposer community of B. pinnatum was more efficient in functionally dissimilar neighborhoods. Multiple explanations are possible and we stress from the onset that for a complete explanation we would need more below-ground traits measured on neighbors. We also note that our system was mowed yearly and plant material was exported, which reduced the thickness of the litter layer and might have lowered neighbors effects on the complementarity of litter-mixture resources.

In B. pinnatum, decomposer efficiency did increase in functionally dissimilar neighborhoods, suggesting decomposers benefited from the availability of functionally complementary litter and that they were generalist rather than specialist (see [START_REF] Loreau | Biodiversity and ecosystem functioning: current knowledge and future challenges[END_REF][START_REF] Gessner | Diversity meets decomposition[END_REF]. It is also likely that in functionally dissimilar neighborhoods, soil resource availability increased, possibly reducing competition between mycorrhizal fungi and decomposing fungi then improving efficiency of the latter in litter decomposition (Gadgil effect;Fernandez & Kennedy, 2016). Root exudates might also have been more diverse, stimulating a greater range of decomposer organisms. This latter mechanism, to our knowledge, has never been tested for leaf litter and should be investigated in the future. In E. repens, we did not observe a response of decomposer efficiency to functional dissimilarity to neighborhood. Mowing with exportation might have removed neighbors effects on decomposer efficiency. Alternatively, litter of E. repens, which lost mass more rapidly than litter of B.

pinnatum, might always be appetent or a high-quality substrate for decomposer organisms,

A c c e p t e d m a n u s c r i p t regardless of soil conditions or neighborhood litter quality (see [START_REF] Wardle | The influence of plant litter diversity on decomposer abundance and diversity[END_REF][START_REF] Hoorens | Neighbour identity hardly affects litter-mixture effects on decomposition rates of New Zealand forest species[END_REF]. Thus, functionally dissimilar neighbors might increase decomposer efficiency only in poorly decomposable species, probably via complementarity effects.

Functional diversity of plant communities accelerates ecosystem functioning

Our study showed that functional diversity of plant communities increased litter quality within both focal species, and also increased efficiency of the decomposer community in one species. Thus, interspecific functional diversity of plant communities accelerated the ecosystem function of litter decomposition, via plant-plant and plant-decomposer interactions. The magnitude of increase in litter decomposition (more than 100% with combined effects of litter quality and decomposer efficiency) was much higher than commonly-observed changes in litter decomposition during litter transplant experiments (see [START_REF] Makkonen | Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient[END_REF][START_REF] Veen | Litter quality and environmental controls of home-field advantage effects on litter decomposition[END_REF]. The mesocosm experiment was conceived to mimic semi-natural grasslands, with similar species composition, similar monocotyledon:dicotyledon ratio and similar management (yearly mowing with removal). Therefore, the strong increase of focal-plant's litter decomposition in functionally diverse plant communities might well apply to semi-natural grasslands, which are the dominant grasslands in many regions of the world. In entirely natural systems, plant material is not exported, potentially rendering neighbors effects on litter decomposition more important. Overall, in diverse communities, the increase of litter decomposition might accelerate nutrient remineralization, as well as promote higher belowground biodiversity (Hättenschwiler et al., 2005;[START_REF] Gessner | Diversity meets decomposition[END_REF]; it could also improve microclimatic conditions for germination or establishment of propagules. These changes together increase soil fertility. Consequently, our results may provide a novel explanation for how functional diversity accelerates ecosystem functioning in grasslands, and notably ecosystem productivity (see e.g. [START_REF] Tilman | Diversity and productivity in a long-term grassland experiment[END_REF][START_REF] Loreau | Biodiversity and ecosystem functioning: current knowledge and future challenges[END_REF]: interspecific functional diversity within grassland communities can magnify intraspecific contributions to litter decomposition, which might accelerate nutrient cycling. In our study, sampling afterlife traits permitted to mechanistically understand the link between functional diversity and ecosystem functioning. We therefore believe that a trait-based ecology would be very helpful to integrate above and below-ground plant interactions during community assembly with various ecosystem processes.

CONCLUSIONS

Our study revealed that a functionally dissimilar neighborhood strongly increased litter decomposition in two Poaceae species. In both species, litter decomposition increased via improved litter quality. This was due to intraspecific afterlife trait responses resulting from interactions with plant neighbors. In one species, litter decomposition also increased via an increase of decomposer 

  percentage of surface attacked by fungi and percentage of senescent area, following the protocols of Pérez-Harguindeguy et al. (2013). SLA, LDMC and percentage of fungal attacked surface were measured on the youngest fully expanded leaf of focal plants, in order to standardize measures across individuals. The percentage of senescent area was measured on the three youngest leaves.

  The corresponding compound path connecting functional dissimilarity to mass loss via litter C:N amounted to 0.22. None of the functional traits affected microbial biomass. In E. repens, none of the functional traits affected mass loss, while high leaf senescence and low litter C:N increased microbial biomass (Tab. 2, Fig.2and Fig.S1 C, D, E, F). The corresponding compound paths connecting functional dissimilarity to microbial biomass via senescence area and litter C:N respectively amounted to -0.15 and -0.16.

  3 B and Tab. 3) and decomposer efficiency (r 2 =0.15, Fig. 3 C and Tab. 3). The litter-quality effect in B.

  results suggest a novel mechanism for how functional diversity may increase ecosystem functioning in grassland ecosystems: the interspecific functional diversity within plant communities can increase intraspecific litter quality and decomposer efficiency. Fernandez CW, Kennedy PG. 2015. Revisiting the 'Gadgil effect': do interguild fungal interactions control carbon cycling in forest soils? New Phytologist 209: 1382-1394. Foucreau N, Piscart C, Puijalon S, Hervant F. 2013. Effect of climate-related change in vegetation on leaf litter consumption and energy storage by Gammarus pulex from continental or mediterranean populations. PloS one 8: e77242.
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 1 FIGURE CAPTIONS
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 2 Figure 2. Path analysis models for the effects of functional dissimilarity to neighborhood on litter mass loss or litter microbial biomass mediated by functional traits. Arrows represent significant relationships between two variables, whose standardized regression coefficients and significances are given with arrows (*: P<0.05, **: P<0.01, ***: P<0.001). R² of each model is indicated in the box of its dependent variable. See Tab. 1 and Tab. 2 for the details of models and Fig. 2 of Supporting Information for graphical results.

Figure 3 .

 3 Figure 3. Functional dissimilarity to neighborhood improved litter mass loss in both focal species: influence of neighborhood on litter mass loss, mediated via the combined effects of litter quality and decomposer efficiency ("overall effect" A, D), via only litter quality (B, E), and via only decomposer efficiency (C, F). The r² and the significance are given (*: P<0.05, **: P<0.01, ***: P<0.001, NS: nonsignificant). Note logarithmic scale for mass loss in B. pinnatum. See Tab. 3 for model characteristics.
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  functional dissimilarity to neighborhood. Therefore, by transplanting litter from focal plants grown in polycultures (i.e. neighborhoods not restricted to conspecifics) to monocultures, we were able to evaluate how functional dissimilarity to neighborhood affects litter decomposition via litter quality alone. Reciprocally, by transplanting litter from focal plants grown in monocultures to polycultures,

	m a n u s c r i p t
	A c c e p t e d

Table 1 .

 1 Functional dissimilarity to neighborhood affected functional traits of focal plants: summary of the best regression models explaining each functional trait of each focal species by the functional dissimilarity to present neighborhood (see Materiel and Methods section for model selection, and Tab. S1). Spatial scale is the radius (in cm) of the considered neighborhood. Other model characteristics are the standardized regression coefficient (Stand. Coeff.), the degree of freedom (Df), the value of the F-test (F), the p-value (P) and the percentage of trait variation accounted for by the neighborhood (r²). Significant models are in bold (P < 0.05).

	TABLES		
	Functional trait C:N ratio Leaf toughness Fungal attack Senescent area LDMC SLA	Species B. pinnatum E. repens B. pinnatum E. repens B. pinnatum E. repens B. pinnatum E. repens B. pinnatum E. repens B. pinnatum E. repens	Spatial scale Stand. Coeff. 10 0.33 30 -0.01 30 0.43 30 -0.03 30 0.37 30 -0.32 30 -0.53 30 -0.42 20 -0.59 30 0.61 20 -0.16 20 -0.49 m a n u s c r i p t Df F P r² 48 6.91 0.011 0.11 35 0.01 0.93 -0.03 22 2.8 0.11 0.07 35 0.09 0.77 -0.03 22 4.7 0.042 0.14 35 8.3 0.007 0.17 22 8.8 0.007 0.25 30 11.5 0.002 0.25 36 22.2 3.59 x10 -5 0.36 35 44.6 9.9 x10 -8 0.55 20 0.8 0.40 -0.01 19 10.0 0.005 0.31
	A c c e p t e d

Table 2 .

 2 Functional traits affected mass loss and microbial biomass: summary of the best models explaining mass loss and microbial biomass of each focal species by its functional traits (see Materiel and Methods section for model selection). Model characteristics are the standardized regression coefficients (with their significance: *, *** for P < 0.05 and P < 0.001), the degree of freedom (Df), the value of the F-test (F), the p-value (P) and the adjusted percentage of dependent variable variation accounted for by functional traits (adj-R²). Significant models are in bold (P < 0.05).

				Effects of functional traits of focal species				
	Effect on	Species	LDMC	SLA	C:N	Leaf toughness	Fungal attack	Senescent area	Df	F	P	adj-R²
	Mass loss	B. pinnatum E. repens		-0.064	-0.367***	-0.113			130 76	18.56 3.21 x10 -5 0.12 0.47 0.624 0.01
	Microbial	B. pinnatum 0.115				-0.297		40	0.44	0.646	-0.03
	biomass	E. repens			-0.260*			0.360*	42	6.83 2.71 x10 -3 0.21

Table 3 .

 3 Functional dissimilarity to neighborhood improved focal-plant mass loss via litter quality and decomposer efficiency: summary of the best models explaining mass loss and microbial biomass by functional dissimilarity to neighborhood mediated via litter quality (Q), decomposer efficiency (D, except for microbial biomass) and both (Q + D). See Materiel & Methods section for model construction and selection, and Fig.3for illustration. Spatial scale is the radius (in cm) of the considered neighborhood, and Stand. Coeff is the standardized regression coefficient. Other model characteristics are the degree of freedom (Df), the value of the F-test (F), the p-value (P) and the percentage of dependent variable variation accounted for by the neighborhood (r²). Significant models are in bold (P < 0.05).

			Effect of functional dissimilarity to neighborhood		
	Effect on	Species	Mediated by	Spatial scale	Stand. Coeff.	Df	F	P	r²
			Q + D	10	0.695	45	41.11	7.62 x10 -8	0.47
		B. pinnatum	Q	10	0.436	45	9.09	4.21 x10 -3	0.15
	Mass loss		D Q + D	10 30	0.400 0.352	44 32	9.11 6.12	4.21 x10 -3 0.019	0.15 0.13
		E. repens	Q	30	0.364	34	5.46	0.026	0.11
			D	30	0.019	35	0.02	0.887	-0.03
	Microbial	B. pinnatum	Q + D Q	10 10	0.252 -0.028	19 20	1.25 0.02	0.277 0.865	0.01 -0.05
	biomass	E. repens	Q + D Q	30 30	-0.014 0.106	16 9	0.01 0.12	0.95 0.731	-0.06 -0.09
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