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Abstract

Until now the most efficient solution to align nucleotide sequences containing open reading frames was to use indirect
procedures that align amino acid translation before reporting the inferred gap positions at the codon level. There are two
important pitfalls with this approach. Firstly, any premature stop codon impedes using such a strategy. Secondly, each
sequence is translated with the same reading frame from beginning to end, so that the presence of a single additional
nucleotide leads to both aberrant translation and alignment. We present an algorithm that has the same space and time
complexity as the classical Needleman-Wunsch algorithm while accommodating sequencing errors and other biological
deviations from the coding frame. The resulting pairwise coding sequence alignment method was extended to a multiple
sequence alignment (MSA) algorithm implemented in a program called MACSE (Multiple Alignment of Coding SEquences
accounting for frameshifts and stop codons). MACSE is the first automatic solution to align protein-coding gene datasets
containing non-functional sequences (pseudogenes) without disrupting the underlying codon structure. It has also proved
useful in detecting undocumented frameshifts in public database sequences and in aligning next-generation sequencing
reads/contigs against a reference coding sequence. MACSE is distributed as an open-source java file executable with freely
available source code and can be used via a web interface at: http://mbb.univ-montp2.fr/macse.
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Introduction

A wide range of molecular analyses rely on multiple sequence

alignments (MSA), e.g., motif detection within genes and genomes

[1], prediction of tridimensional structures [2], phylogenetic

inference [3] and detection of positive selection [4]. In all these

studies, the initial MSA can strongly impact conclusions and

biological interpretations [5]. As a consequence, MSA is a richly

developed area of bioinformatics and computational biology.

The DNA sequences to be aligned often contain open reading

frames (ORF) that code for proteins. A coding sequence can be

considered either at the nucleotide (NT) or amino acid (AA) level.

Because of the redundancy of genetic codes, different codons

encode the same AA. The NT sequence is thus less conserved but

more informative than its AA translation. Since they are more

informative, NT sequences should be able to provide equally good

or even better alignments than their sole AA translation. In

particular, aligning NT sequences may account for interrupted

ORFs. These interruptions result from (i) the insertion of a non-

multiple of 3 consecutive nucleotides – or the deletion thereof –,

both inducing frameshifts that lead to transient or irreversible

aberrant downstream AA sequence translation; and (ii) the

substitution of an in-frame nucleotide resulting in unexpected,

premature stop codons that shorten the AA sequence. These

events may have either artefactual or biological causes. First of all,

experimental errors may occur. Sequencing errors are frequent

with the new sequencing technologies resulting in elevated error

rates in homopolymers when using 454 GS-FLX [6] and in short

read ends with Illumina Genome Analyzer [7]. This phenomenon

is reinforced when ancient or present-day degraded DNA serves as

PCR template [8]. Secondly, gene inactivation during the course

of evolution leads to pseudogenes that exhibit disruption(s) of their

original ORFs and whose identification has proven computation-

ally difficult [9]. Thirdly, programmed frameshift mutations that

are tolerated during translation have been widely documented

[10] and their role in the evolution of novel gene function has been

reported [11] To achieve higher NT alignment quality and

detection of ORF interruptions, the AA translation should be

taken into account during the alignment process. Ignoring it would

mean omitting fundamental information. Yet, frameshifts and

premature stop codons hamper the correct AA-guided alignment

of NT sequences.

Numerous tools exist to align DNA sequences, among which are

CLUSTAL [12], T-COFFEE [13], DIALIGN [14], MUSCLE

[15], MAFFT [16], and the more recently proposed PRANK [3]

and FSA [17]. However, when dealing with protein-coding

sequences, these methods do not take into account the

corresponding AA translations. Ignoring the AA translation is a

major handicap in these methods for two main reasons [18,19]: (i)

as NT sequences are less conserved, clear similarities at the AA
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level can be obscured at the NT level thus complicating the

alignment; (ii) current optimization criteria during the alignment

procedure do not penalize insertion/deletion events (indels) that

create translation frameshifts. As a result, a protein-coding

sequence containing an insertion of two nucleotides followed by

a downstream insertion of 7 nucleotides will have the same gap-

related penalties as the more realistic scenario of an insertion of

three nucleotides followed by another insertion of 6.

To overcome these problems, one common strategy consists of

using a three-step approach. First of all coding NT sequences are

translated into AA, these AA sequences are then aligned, and

lastly, the obtained protein alignment is used for deriving the NT

one. Tools such as revTrans [18], transAlign [19], PAL2NAL

[20], and TranslatorX [21] were specifically developed to

automate this straightforward alignment strategy. Note that

PAL2NAL additionally allows to manually specify a priori the

position of known frameshifts. DIALIGN [14] proposes this three-

step strategy as an option for aligning DNA sequences. Moreover,

it can either consider the full DNA sequence as coding, or search

for its longest reading frame. The main drawback of this three-step

approach is its inability to handle unexpected frameshifting

substitutions. The AA translation that follows such events is no

longer the correct one. At best, this erroneous translation will

quickly lead to a stop codon that will alert the user and/or prevent

the AA alignment. In other cases, the translated AA sequence will

look like a highly divergent, orphan sequence at the protein level

and will induce a partly aberrant DNA alignment. Such cases

seem to be frequently encountered even in benchmark alignment

datasets [22].

Unlike the vast literature on sequence alignment, few studies

have focused on AA-aware NT sequence alignment. One of the

first works on this subject was by Hein [23]. The author proposed

a general DNA/protein model, where the cost of an alignment is a

combination of its cost at the NT and AA levels. He then

considered a special case where the two costs are simply summed

and sequence evolution is idealized to involve only nucleotide

substitutions and AA indels (no frameshift is allowed). An O(n2m2)
algorithm has been proposed to align two sequences of length n
and m under this model [23]. A solution was then described to

solve the same problem under affine gap costs in O(nm) by

Arvestad [24] and Pedersen et al. [25]. These improvements

seemed to be promising as this algorithm reached the same

asymptotic complexity as classical DNA alignment methods.

However, the authors acknowledged that the constant factor

masked by the O notation may be limitative in practice [25].

Indeed, to obtain a pairwise alignment, their method needs to

compute 400 nm table entries which preclude its use in the MSA

context.

An alternative approach that was recently proposed [26]

consists of scoring the alignment according to a weighted sum of

four costs: the NT alignment cost plus those of its three possible

AA alignment translations. To make the algorithm simpler and

faster, no specific cost is associated with indels that induce

frameshifts. Here, frameshifting indels are supposed to be

penalized by the AA mismatch they will induce. Considering all

three reading frames may appear surprising since often only one is

relevant, but this tool was specifically developed for handling viral

genomes which may use overlapping reading frames [26].

In a slightly different context, an algorithm has been proposed

to detect frameshift errors in newly determined NT sequences by

comparison with AA sequences in public databases [27]. The

algorithm generalizes the classical Smith-Waterman pairwise

algorithm [28] so that the three reading frames are considered.

An explicit frameshift cost is used to penalize frameshifts. This

method provides an elegant solution for evaluating sequence

proximity but cannot be extended to MSA since the underlying

alignment cannot be displayed by the classical matrix represen-

tation used in MSA algorithms.

Here we present an AA-aware alignment algorithm where both

input NT sequences could contain multiple frameshifts and/or

stop codons. This pairwise coding sequence alignment method is

fast enough to be extended to a MSA program called MACSE

(Multiple Alignment of Coding SEquences). Indeed although

pairwise solutions have existed for almost two decades, MACSE is

the first MSA program able to align coding sequences based on

their AA translations while accounting for frameshifts. We

illustrate the relevance and usefulness of the MACSE program

on biological case studies aimed at 1) computing MSA of protein-

coding genes containing non-functional, pseudogene sequences, 2)

aligning high-throughput sequencing reads against reference

coding sequences and 3) detecting undocumented frameshifts in

published sequences. MACSE is an efficient solution to detect

errors in coding sequences and the first automatic solution to align

pseudogenes while taking into account their potential AA

translation and preserving their codon structure.

Results

As illustrated in this section, MACSE is capable of producing an

alignment of multiple protein-coding sequences possibly contain-

ing frameshifts and/or stop codons, either because these sequences

contain errors or because they represent non-functional sequences.

At the AA level, MACSE represents the stop codon by its usual

symbol ‘‘*’’ and a codon containing a frameshift is represented by

an extra symbol, the ‘‘!’’ (see figures below for examples).

Meanwhile, at the nucleotide level, MACSE uses the symbol ‘‘!’’

to represent deletions of one or two nucleotides that induce

frameshifts and it uses no special representation for the stop codon.

Multiple alignment of functional and pseudogene
sequences

Numerous evolutionary studies of individual genes or gene

families involved in morphological adaptations require to quantify

variation in selective pressure. Such analyses of molecular

evolution based on codon models typically require aligning both

functional and non-functional (pseudogene) sequences while

respecting the underlying codon structure at the nucleotide level

[4,29,30]. In this case, standard MSA programs that consider

nucleotide sites independently disrupt the coding structure, while

those that rely on AA translation are hampered by the presence of

multiple frameshifts and premature stop codons.

As a first biological case, we show how MASCE can align

multiple heterogeneous sequences from the ambn gene coding for

ameloblastin. This enamel constitutive protein has been lost in

whales whose teeth have been replaced by keratinous baleens [31].

In these species, the relaxation of selective constraints has allowed

the accumulation of mutations leading to the occurrence of

frameshifts and stop codons. Although no longer coding for a

functional protein, the ghost of selection past acting on these

pseudogenes nevertheless left traces of their former codon

structure [32]. Using MACSE with the option adjusting frameshift

and stop codon costs in pseudogenes rendered possible the

incorporation of non-functional sequences in a codon-based

alignment of functional orthologs of this gene (Fig. 1). Here,

MACSE suggests the occurrence of three frameshifts, the positions

of which are indicated by exclamation marks. In the first two cases

they pinpoint the insertion of an additional nucleotide in several

pseudogenes (Fig. 1: case 1 and 2) while in the third case a unique

MACSE: Multiple Alignment of Coding SEquences
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exclamation mark is introduced to indicate the probable deletion

of a nucleotide in the pseudogene of Eschrichtius (Fig. 1: case 3).

As a second example, we considered more divergent sequences

from bird olfactory receptor genes. In this case, ecological

differences among species have shaped the olfactory gene

repertoires through gene duplication and pseudogenization events

[29]. Here, we used MACSE to align 93 functional sequences with

18 pseudogenes from the brown kiwi (Apteryx australis) and domestic

chicken (Gallus gallus) olfactory repertoires. The codon alignment

highlights the occurrence of multiple stop codons (Fig. 2: sites 1

and 2) and the occurrence of frameshifts (Fig. 2: sites 3 and 4.)

Stars and exclamation marks in the corresponding AA alignment

respectively emphasize these events, which disrupt the coding

frame while maintaining the correct translation. Note also that

some functional sequences of these olfactory receptor genes share

large in-frame deletions that are handled by MACSE.

Since MACSE alignments allow preserving the underlying

codon structure they can be directly used to detect selection at the

DNA level by estimating the dN/dS ratio with methods based on

codon models of sequence evolution. Such analyses allow

estimating where (along the gene) and when (along the phylogeny)

pseudogenization events have occurred [4]. Note that other

softwares (e.g., translatorX) were unable to align these datasets due

to the presence of pseudogene sequences that display frameshifts.

Hence, no matter which of the three possible reading frames is

used the resulting translation contains stop codons. Indeed,

pseudogene sequences should not be translated using a single

reading frame as done by revTrans, transAlign or TranslatorX but

using the three reading frames alternatively switching from one to

the other at each frameshift. We also tested DIALIGN on these

two case studies. The DIALIGN option searching for the longest

reading frame is not satisfactory since sequences are truncated at

the first encountered stop codon. Other DIALIGN options,

including those based on AA translation, result in alignments that

disrupt the codon structure by introducing numerous frameshifts

and stop codons even in functional sequences. Finally, PAL2NAL

might be used for this purpose but it requires specifying a priori

the position of frameshifts in the AA alignment. By explicitly

modeling frameshifting events and allowing distinct alignment

penalties for different sets of sequences, MACSE has a main

advantage over existing alignment tools, and is able to infer

frameshift positions and propose more relevant alignments when

non-functional sequences are sampled. This greatly facilitates

subsequent analyses of molecular evolution based on codon

models.

Aligning raw sequences to a coding reference
With the exponentially growing DNA data generated by new

high-throughput technologies, it has become particularly impor-

tant to correctly align sequencing reads or contigs with the

corresponding reference markers. Despite the high genome

coverage generated by these approaches, the mapping and

alignment tasks are complicated by the fact that 454 or Illumina

reads may suffer from sequencing errors [6,7]. Alignment-based

methods have recently been proposed to correct sequencing errors

in next-generation sequencing reads [33]. Since numerous

phylogenomics and molecular evolution studies rely on expressed

sequence tag (EST) data [34], MACSE can help computational

biologists to align reads with their corresponding coding

sequences.

As a second proof-of-concept example, we therefore illustrate

the use of MACSE to align 454 reads obtained from a

transcriptomic approach among mammalian rodents. There are

five model rodents for which complete genome resources are

available (cf. EnSEMBL v59): domestic mouse (Mus musculus),

Norway rat (Rattus norvegicus), kangaroo rat (Dipodomys ordii), Guinea

pig (Cavia porcellus), and ground squirrel (Spermophilus tridecemlineatus).

Here, we focus on the transcriptome of a non-model rodent

species, – the jerboa Jaculus jaculus –, belonging to the Dipodidae, a

family which is closely related to Muridae including mouse and rat

[35]. After gathering 454 reads from the jerboa transcriptome, we

assigned them to the OrthoMaM collection of mammalian 1-to-1

orthologues [36] following a BLAST-based strategy.

In the case of the tmem214 gene (EnsEMBL mouse accession

ENSMUSG00000038828), several reads displayed problems.

MACSE identified 4 frameshifts in 3 matching reads (Fig. 3).

Detecting these frameshifts with MACSE will help contiging the

reads, with procedures like CAP3 [37] or miraEST [38], especially

in low-coverage regions for which less sequencing information is

available to choose among alternative base calls. Moreover, if

Figure 1. Open reading frame and pseudogene alignment of AMBN sequences in cetartiodactyls. Three situations are illustrated in
which frameshifts detected by MACSE are indicated by exclamation marks. The 7 pseudogene sequences are boxed. Case 1: To maintain the reading
frame, two exclamation marks are introduced in the Balaena and Eubalaena sequences. This pinpoints the occurrence of an extra C inserted in these
three pseudogenes. Case 2: A similar situation in the three Balaenoptera sequences, with an extra T. Case 3: To maintain the reading frame, one
exclamation mark is introduced in the Eschrichtius sequence. This pinpoints a single nucleotide deletion in this pseudogene. MACSE default
parameters were used, i.e. matrix (BLOSUM 62), gap opening (27), gap extension (21), frameshift (230), and stop codon (2100) except for
pseudogene sequences for which lower penalties were assigned to frameshift (220) and stop codon (210).
doi:10.1371/journal.pone.0022594.g001

MACSE: Multiple Alignment of Coding SEquences
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some reads concentrate frameshifts (see e.g. read_05 in Fig. 3),

they can be a posteriori discarded from the subsequent assembly

procedure. Finally, the error-free AA alignment produced by

MACSE will be useful in phylogenomic studies relying on protein

sequences for inferences of evolutionary relationships at deep

taxonomic scales [39].

Figure 2. Snapshots of a multiple alignment of 93 functional and 18 pseudogene sequences from brown kiwi (Apteryx australis) and
domestic chicken (Gallus gallus) olfactory repertoires. The same alignment region is displayed at the NT (left) and AA (right) levels. The 18
pseudogene sequences are boxed. Stop codons (stars in amino acid sequences) occurring at sites 1 and 2, and frameshifts (exclamation marks)
inferred by MACSE at sites 3 and 4 are circled. MACSE guideline parameters for pseudogene datasets were used (see Fig. 1 for details.)
doi:10.1371/journal.pone.0022594.g002

Figure 3. Alignment of 454 reads from a rodent transcriptome. Orthologues of the tmem214 gene in 5 model rodents (mouse, rat, ground
squirrel, Guinea pig, and kangaroo rat) were used as references to align 454 reads from the transcriptome of a non-model species, the jerboa (Jaculus
jaculus). The MACSE protein alignment is given for the 5 model species and for 6 Jaculus reads. The insets focus on 4 regions in which frameshifts
were detected. The corresponding nucleotide alignments are provided in a 15-site window. The exclamation marks suggest the location of
sequencing errors in the coding sequence reads. MACSE default parameters were used, i.e. matrix (BLOSUM 62), gap opening (27), gap extension
(21), frameshift (230), and stop codon (2100) except for 454 reads for which lower penalties were assigned to frameshift (210) and stop codon
(260).
doi:10.1371/journal.pone.0022594.g003

MACSE: Multiple Alignment of Coding SEquences
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Detecting frameshifts in coding sequences from public
databases

As a last proof-of-concept example, we used the properties of

MACSE to detect undocumented frameshifts in the EnsEMBL

public sequence database [40]. During the construction of the

OrthoMaM database of orthologous mammalian markers [36], we

discovered a number of genes for which the sum of all branch

lengths of the maximum likelihood phylogenetic tree is signifi-

cantly departing from the average. To check whether this might be

caused by undetected frameshifts in some of the coding sequences

(causing them to be misaligned), we realigned these datasets using

MACSE default options. Quite unexpectedly, several examples

were revealed where some of the sequences indeed presented a

shift in their reading frame induced by nucleotide indels. One

striking example is provided by the tmem184a gene

(ENSG00000215155) presented in Fig. 4.

Aligning the 1-to-1 orthologous coding nucleotide sequences of

this gene with TranslatorX+MUSCLE (i.e. the AA alignment of

TranslatorX is done with MUSCLE) resulted in an alignment

where the chimpanzee (Pan) and orangutan (Pongo) sequences are

clearly misaligned (Fig. 4A). This alignment error came from the

AA translation of these sequences which resulted in highly

divergent protein sequences (Fig. 4B). Applying MACSE to this

dataset revealed that the two sequences in fact lack two nucleotides

at the same site (Fig. 4C) resulting in a shift in their reading frame,

in turn resulting in divergent AA sequences. As MACSE is able to

efficiently detect these frameshifts, it returned correct alignments

for both nucleotide and AA sequences (Fig. 4D) while indicating

the most likely positions of those frameshifts in the sequences.

Despite being guided by the AA translation of the sequences,

TranslatorX is hampered by the fact that, by chance, these

frameshifting indels do no lead to premature stop codons. By

explicitly accounting for the underlying coding structure of the

nucleotide sequences, MASCE is able to recognize that the most

likely scenario is the presence of indels disrupting the coding

frame. Whether the presence of these indels in curated coding

sequences in a public database reflects annotation problems or

sequencing errors is not known, but the problem may be more

widespread than previously thought [22]. MACSE is a potentially

efficient method for pinpointing and correcting such anomalies.

Computing times
MACSE computation times remain reasonable compared to the

human time spent aligning sequences that, up to now, no

automatic method was able to align correctly. Though MACSE

is slower than MUSCLE and TranslatorX+MUSCLE, MACSE is

still a viable solution to align large datasets of hundreds of

sequences and thousands of sites in a few computing hours. This

section described several such examples where MACSE is worth

the extra computation time. We also note that sequence alignment

is often the first step in a long chain of analyses and that it may be

worth investing time to obtain a reliable MSA before running, for

instance, Bayesian phylogenetic inference which can require weeks

of computation.

Design and Implementation

Model simplifications
Biological cases of disrupted reading frames are rare (e.g. in

programmed frameshift mutations or pseudogenes) but sequencing

errors that lead to apparent frameshifts are much more frequent.

Such frameshifts occur through indels that are not multiples of

three when one or two consecutive nucleotides are either deleted

or inserted. To distinguish these kinds of frameshifts, we

respectively denote as FS{ those induced by deletions, and by

FSz those induced by insertions. There are two main differences

Figure 4. Alignments of orthologous CDS of the tmem184a gene (ENSG00000215155) from EnsEMBL v59. The TranslatorX+Muscle
alignment is displayed at the nucleotide (NT) level (A) and at the Amino Acid (AA) level (B). Similarly, the MACSE alignment (obtained with default
parameters) is displayed at the NT (C) and AA level (D).
doi:10.1371/journal.pone.0022594.g004

MACSE: Multiple Alignment of Coding SEquences
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between our solution and other pairwise coding sequence

algorithms (e.g. [23], [24], [26]). Firstly, our objective function is

only based on sequence AA translations and secondly it ignores

FSz events. These two approximations allow us to extend our

pairwise algorithm to MSA.

As mentioned in the introduction, Hein [23] and Pedersen et al

[25] proposed defining the overall cost of the alignment as the sum

of the costs of the two alignments. One can argue that the NT level

is at least partly taken into account within classical AA substitution

matrices such as PAM [41] or Blosum [42]. Using summation also

raises the question of the relative importance of these two

information levels in the alignment process since, as mentioned by

the authors [25], other cost combinations could also be used.

Hence, following the three-step strategy, we prefer to consider only

the AA alignment cost which has the advantage of simplicity

resulting in a faster solution.

Pairwise alignment algorithm accounting for frameshifts

[24,25,27] explicitly model FSz events (those representing the

presence of one or two extra nucleotides in a sequence).

Representing such events in the output alignment require either

to remove the corresponding extra nucleotides from the sequence

or to display it as a partial codon (e.g. ‘‘! ! C’’) facing a ‘‘ghost’’

codon in the other sequence (‘‘! ! !’’) that is neither a real gap nor

codon. None of these solutions is adapted to the classical strategy

used to extend pairwise alignment algorithm to MSA (this strategy,

based on alignment of alignments, is detailed at the end of this

section). Removing the extra nucleotides prevents questioning this

choice afterwards. Meanwhile, using a ghost codon (‘‘! ! !’’) is

problematic, especially for correctly evaluating the costs of gap

opening/closing when aligning two alignments. Indeed these costs

are efficiently estimated based on the local configuration of gap

and non-gap characters but since a ghost codon is neither one nor

the other the standard solutions (e.g. [43,44]) no longer work. This

difficulty to handle FSz events is certainly the main reason for

which previous pairwise solutions have never been extended to

MSA. Note that ignoring FSz is not so dramatic since they can

always be explained as a FS{ event in the concerned sequence

facing a codon deletion in others (e.g. ‘‘! ! C’’ facing ‘‘– – –’’). This

is a practical approximation with little, if any, impact when only

two sequences are aligned. In the case of MSA, this approach

overpenalizes FSz events (by adding deletions to other sequences),

but it does not seem to have a major impact in practice. We

acknowledge that an exact handling of FSz events would be

preferable. Yet, as none have been found since Hein seminal work

published in 1994, we think that it is time to consider approximate

solutions to extend his pairwise model to a useful MSA tool.

Defining the objective function of pairwise alignments
containing frameshifts and stop codons

An alignment of two sequences S1, S2 can be seen as a

transformation process to turn S1 into S2 as illustrated in Fig. 5.

Once a cost is associated with each elementary transformation

(changing one letter into another, inserting/removing letters), the

overall cost of the transformation process associated with an

alignment can be computed by simply summing up the cost of its

elementary transformations. An optimal alignment is then one

with the minimum total transformation cost. To obtain a

biologically meaningful alignment, the various elementary costs

must be carefully chosen. The cost of turning one amino acid X

into another Y depends on their physicochemical properties and is

denoted as s(X ,Y ). The cost of an insertion/deletion of l AAs

is generally defined as cost(gap open)zl:cost(00{00) where

cost(gap open) is a high value penalizing gap opening while

cost(00{00) is a smaller value penalizing gap extension. This reflects

the fact that indels are rare events (compared to substitutions) and

that longer indels are even rarer. Note that this kind of gap cost is

independent of the symbols that are inserted or deleted.

As explained above, our objective function only considers the

AA alignment cost. From this point of view, it is sufficient to define

the transformation cost related at the AA level to the two

additional symbols used to represent frameshifting indels (‘‘!’’) and

stop codons (‘‘*’’). Note that the probability of observing a

frameshift or a stop codon in a sequence is relatively independent

of what is observed in other sequences at the same site. The way to

account for them is thus similar to the way indels are classically

accounted for. Note that this is more than a coincidence for

frameshift symbols since they indeed represent improbable indels

of one or two nucleotides. The presence of ‘‘!’’ in front of any

symbol is thus penalized with a high cost denoted as cost(00!00).
Similarly, the presence of ‘‘*’’ in front of any symbol has also a

high cost denoted as cost(00 �00 ). As a consequence, the presence of

a ‘‘*’’ facing a ‘‘!’’ has a total cost of cost(00!00)zcost(00 �00 ).
Finally, stop codons appearing at the end of a sequence should

not be penalized whereas frameshifting indels at sequence

extremities must not be penalized more than other indels. From

an algorithmic point of view, this is taken into account in our

program in a way similar to indel costs that are generally handled

to avoid penalizing those appearing at sequence ends.

Finding the optimal alignment of two coding sequences
with frameshifts and stop codons

Our solution, as most existing pairwise alignment methods of

molecular sequences, is an improvement on the classical ‘‘Needle-

man-Wunsch’’ algorithm [45–47]. We thus start by recalling its

basis. Having a sequence S, we denote len(S) its length, and

S½i : j� the subsequence of S comprised between its ith and jth

characters. Note that S½i : i� is thus the ith character of S and that,

by convention, S½i : j� is the empty sequence (‘‘’’) if jv1 or jvi.
The first key observation is that the optimal alignment of two

sequences can easily be deduced from the optimal alignments of

the two sequences shortened by at most one character. More

precisely, A(S1,S2) being the optimal alignment between two

sequences S1 and S2 and its cost cost(A(S1,S2)), the overall cost of

an optimal alignment between the two sequences can be

recursively computed using the following formula (as long as

i§1 and j§1):

cost(A(S1½1 : i�,S2½1 : j�))~min

cost(A(S1½1 : i{1�,S2½1 : j{1�))zs(S1½i�,S2½j�)
cost(A(S1½1 : i{1�,S2½1 : j�))zcost(00{00)

cost(A(S1½1 : i�,S2½1 : j{1�))zcost(00{00)

8><
>:

ð1Þ

The recursion stops when at least one sequence is empty. An

efficient solution for this recursive problem is to store each sub-

problem solution. This only requires O(len(S1):len(S2)) memory

space while saving exponential computation time. The cost of each

sub-problem solution is stored in a two-dimensional array of size

(len(S1)z1)6(len(S2)z1) that we denote C such that

C½i�½j�~score(A(S1½1 : i�,S2½1 : j�)). The first row and column

of C correspond to alignment containing an empty sequence

with straightforward costs, e.g. C½0�½j�~C(A(0000,S2½1 : j�))~j�
cost(00{00). Once the first row and the first column are initiated,

other cells of C are considered in a left/right, top/down order.

Hence each value of C½i�½j� can be computed in constant time

using the recursive formula (1) that relies on the three sub-problem

costs stored in C½i{1�½j{1�, C½i{1�½j� and C½i�½j{1�. The last

computed value (C½len(S1)�½len(S2�) is the cost of an optimal

alignment of S1 and S2. An optimal alignment can be obtained

MACSE: Multiple Alignment of Coding SEquences

PLoS ONE | www.plosone.org 6 September 2011 | Volume 6 | Issue 9 | e22594



from the filled C array by using a backtracking algorithm. This

algorithm starts from the last entry of C (i.e. C½len(S1)�½len(S2�)
and determines which of its three neighbors has been used to

obtain its optimal value. If the value comes from the left, it

indicates an insertion of the last character of S1; from the top, it is

a deletion of this character; and from the diagonal, it is a

substitution between the last two characters of S1, S2. The

algorithm then moves to the corresponding neighbor and the same

process is repeated until the top left of the array is reached.

As we are looking for an alignment that takes into account the

AA translation of the NT sequences, we need to introduce a new

notation to link these two sequence levels. We will use p(S) to

denote the raw translation of a nucleotidic sequence S into AAs.

This raw translation is realized using the first reading-frame,

incomplete codons are converted into ‘‘!’’ and stop codons are

converted into ‘‘*’’ without interrupting the translation. Consid-

ering two protein-coding nucleotide sequences without frameshifts

S1 and S2, the CAA array used to align p(S1) and p(S2) can be

viewed as a compression of the corresponding C array that would

have been used to align S1 and S2. Indeed, each row (resp.

column) of CAA represents three rows (resp. columns) of C. An

alignment equivalent to the one produced by backtracking CAA

can thus be obtained using C given that only movements

corresponding to an AA substitution, insertion, or deletion are

considered. These restrictions lead to considering only cells

C½3i’�½3j’� and to estimating their values based on the following

formula (as long as i’§1 and j’§1):

C½3i’,3j’�~min

C½3i’{3, 3j’{3�zs(AA1,AA2)

C½3i’{3, 3j’�zcost(00{00)

C½3i’, 3j’{3�zcost(00{00)

8><
>:

where AA1~p(S1½3i’{3 : 3i’�) and AA2~p(S2½3j’{3 : 3j’�).
Considering frameshift possibilities is a generalization of this

approach where all cells C½i�½j� are considered and their values are

estimated using all cells inside the square neighborhood delimited

by C½i�½j�, C½i{3�½j�, C½i{3�½j{3� and C½i�½j{3�. This 464

square thus defines 15 neighbor cells of C½i�½j� (Fig. 6). During the

backtracking process, all movements from C½i�½j� toward these 15

neighbors are considered. Three of them correspond to classical

AA translations, while the 12 others induce 1 or 2 frameshifts.

Fig. 7 shows the site alignments corresponding to these 15 possible

movements. The resulting pairwise algorithm of two coding DNA

sequences with respect to a frameshift and stop codon aware NT/

AA model is detailed in Algorithm S1. Note that in this algorithm,

values of C½i�½j� are accessed through a ‘‘get_C(i,j)’’ method that

returns C½i�½j� when i and j are valid indices, and z? otherwise.

The advantage is that the z? value does not interfere with the

search for a minimum value, so that only the C½0�½0� needs to be

initialized while other cells in the three first rows (and columns) are

handled like any others.

This dynamic programming algorithm is described using

constant gap costs, i.e. the cost of an indel of size l is just

l � cost(00{00). The implemented version is extended to handle the

more realistic affine gap costs where the cost of an indel is

cost(gap open)zl � cost(00{00). This is done by using three

matrices I , D and MS containing the optimal costs of partial

alignment ending, respectively, by an Insertion, a Deletion or a

Match/Substitution (e.g. [48]).

Since for each cell we consider 15 neighbors instead of the three

considered in the standard Needleman-Wunsch algorithm, our

approach is, theoretically, five times slower. Having a fast pairwise

algorithm and a valid alignment representation, we can now apply

classical MSA strategy based on this NT/AA model accounting for

frameshifts and stop codons.

Multiple alignment of protein-coding nucleotide
sequences using an NT/AA model accounting for
frameshifts and stop codons

A multiple alignment A of n sequences S1,…,Sn induces a

pairwise alignment for any pair of sequences Si, Sj (1ƒiƒjƒn)

obtained by removing from A all other sequences and those sites

that have a gap for both Si and Sj . The cost of a multiple

alignment is often defined as the sum of the cost of the pairwise

alignment it induces. This criterion is called the sum-of-pairs (SP)

score. Having two alignments A1 and A2 on disjoint sets of

sequences S1 and S2, a variant of the dynamic programming

algorithm used for two sequences allows an alignment A of S1|S2

to be found, among those inducing A1 and A2, that has the lowest

SP score. In this variant, a substitution cost is computed to reflect

the sum-of-pairs criterion, i.e. it is a sum of elementary substitution

costs for transforming AAs (resp. NTs) present in A1 into those

present in A2. Gap extension costs can also be easily derived from

the number of sequences included in both alignments, plus the gap

frequencies of any of their sites. The only real difficulty is to

correctly estimate the exact cost of gap creation that should be

added to the SP score when considering an insertion/deletion

event. Although this number can be computed exactly [44], the

much easier way to compute ‘‘pessimistic gap count’’ estimation

proposed by Altschul [43] appears to produce MSA of good

quality [49].

The MSA produced by MACSE uses a progressive alignment

strategy to obtain an initial draft MSA that is subsequently refined.

Variants of this widespread strategy are used, for instance, by

ClustalW [12], Muscle [15] and OPAL [49]. The influences of

each step variant (such as the method used to measure sequence

similarity) are extensively analyzed in the OPAL paper [49] and

we considered its conclusions when designing MACSE. In

particular, following their conclusions, we fixed the substitution

matrix at BLOSUM62 [42]. The MSA strategy used in MACSE is

obviously not the core of the present paper since we use the

classical approach to extend our original pairwise alignment of

coding sequences into a useful MSA. However, we briefly describe

it below to explain the choice of our main variants.

Firstly, all pairwise sequence similarities are estimated based on

the frequencies of their nucleotide k-mers, i.e. their sub-sequences

of k nucleotides [50]. Those similarities are used to infer a

dichotomic rooted guide tree using the UPGMA distance method

[51]. By using UPGMA, the goal is clearly not to infer a phylogeny

of the sequences but rather to build a guide tree that groups similar

Figure 5. Simple pairwise AA alignment. This alignment describes a way to transform S1 into S2 by deleting the E, inserting an I after the first M,
changing the last M into an N, and deleting the two final I.
doi:10.1371/journal.pone.0022594.g005
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sequences, which must be aligned first [49]. The leaves of this tree

are associated with the sequences to be aligned, whereas its

internal nodes are associated with the MSA of the sequences

included in the corresponding clade. The internal nodes are then

processed bottom up, and the alignment of a node is obtained by

aligning the previously computed alignments of its two descen-

dants. Note that, following the conclusions of the OPAL paper, we

choose to ‘‘align alignments’’ using the pessimistic gap count, as

detailed in [48], rather than to align profiles, which is often the

case e.g. [12,15]. Since the profiles only consider the character

frequencies of each site, they are less time and space consuming

but do not contain enough information to compute gap cost

according to the ‘‘pessimistic gap count’’. The resulting MSA of

the root node is then used as our initial draft of the desired MSA.

We then use the classical 2-cut refinement strategy to improve it.

This strategy consists of partitioning the current solution into two

sub-alignments that are subsequently re-aligned. The resulting

MSA replaces the previous one if its SP score is improved. This 2-

cut refinement strategy also uses the guide tree: it iteratively

considers each clade of the guide tree and splits the current global

alignment so that one of the two sub-alignments contains the exact

sequence of the clade concerned. Once all clades have been tested,

a new guide tree is inferred using UPGMA based on sequence

similarity estimated according to the sequence normalized

contributions to the SP score of the current MSA [49]. Note that

if the guide tree changes, some new 2-cut refinements will be

tested. The refinement process stops when no more improvements

are found, or when the maximum number of refinement iterations

is reached.

Availability, main features, and future directions
The MACSE program is distributed as an open source Java file

executable with available source code. Since it is written in Java,

MACSE is provided as a single jar file that works on every

standard operating system (Windows, Linux, Mac OS). Once

downloaded, it can be launched using the basic command line

instruction e.g., ‘‘java -jar MACSE.jar -i my_seq.fasta -o

my_output_prefix’’ (in the absence of any parameters, MACSE

will print some help describing its options and providing some

command line examples.) This allows to easily integrate MACSE

in a bioinformatics pipeline. MACSE can also be used via a web

interface at: http://mbb.univ-montp2.fr/macse.

Figure 6. Alignment of two DNA coding sequences. Like for classical Needleman-Wunsch, an array is used to store the cost of an optimal
alignment between prefixes of S1( = ATTTCGAAATG) and prefixes of S2( = ATCGAGATG). The AA translations of those sequences are used to detect
STOP codons and to evaluate codon substitutions based on their AA translations. The value of each cell is computed using 15 nearby cells. For
instance, the bold cell value is computed based on its 15 colored neighbors. Among those 15 cells, some induced frameshifts in one or both
sequences (see Fig. 7 for details). For instance cells marked with a ‘‘0’’ cause no frameshift, those marked by ‘‘1’’ cause a frameshift for S1 but not for
S2 . The optimal path (indicated by arrows) is determined using a backtracking process similar to the classical one, except that 15 possible moves are
now considered. The alignment corresponding to this arrow path is depicted in the dashed box.
doi:10.1371/journal.pone.0022594.g006
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Main features and options of MACSE
MACSE takes input sequences in the FASTA format and

provides as output two alignments of those sequences in the same

format (one at the NT level and one at the AA level). The name of

the input file and the basename to be used for the two output

alignments are the only compulsory parameters of MACSE. One

can easily define two sets of sequences that use different frameshift

and stop codon costs by splitting sequences to be aligned into two

different input files. This allows standard use cases to be handled

when one wants to align either protein coding DNA sequences with

pseudogenized ones, or curated sequences from public databases

with sequences resulting from the raw output of new generation

high-throughput sequencing technologies. The alignments output-

ted by MACSE can be examined using the SEAVIEW program

[52,53] which has a well suited codon view option.

The parameter values for gap opening/extension costs strongly

influence the alignment produced by any MSA approach. Despite

all efforts to design an automatic strategy to adjust these costs, the

results obtained with such adjusted parameters are still disap-

pointing compared to those that could have been obtained by the

same MSA method if the true parameters were known [49]. The

MACSE documentation includes some guidelines to choose cost

penalties associated with gap opening/extension and with

frameshift and internal stop codon occurrences for the most

common usages – e.g. alignment of (pseudo)genes. Note also that

since the user can provide an initial alignment that MACSE will

use as a starting point for its 2-cut refinement strategy, one can

rapidly test different parameter sets.

MACSE also integrates the alternative genetic codes, and

provides options to specify the default genetic code to be used

and/or to specify different codes to be used depending on

sequence names. For the latter option, MACSE relies on

a separate option file compatible with the one used by

TranslatorX.

Future directions
Future works include further optimization to speed up the

program and the development of a more elaborated penalty model

to take into account, for instance, the fact that frameshifts are

more frequent within homopolymer portions of sequences. We

also work on handling untranslated regions (UTR) that can appear

at the beginning and/or end of the EST sequences. This can be

done by adapting our algorithm to allow local alignment together

with identification of start and stop codons at their extremities.

Finally, we plan to collaborate with the SEAVIEW developer team

to provide MACSE as a SEAVIEW plug-in.

Figure 7. Relationship between the 15 possible moves and the proposed alignment. Suppose that the backtracking process has led to the
bold cell. The next movement will go from this cell toward one of its 15 colored neighbors and one site will be added to the alignment constructed
by the backtracking process. The site to be added is indicated for each cell.
doi:10.1371/journal.pone.0022594.g007
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