Supplementary materials

3	Mitochondrial diversity. The mtDNA sequences used to compare nucleotide diversity
4	between Culicidae species were available on GenBank: Ae. albopictus (cytb: AJ970990-
5	AJ9701002, AY072044; COI: AF253022, AY072044, AY100666-671, AY101848-
6	AY101854, DQ181451, DQ181457, DQ181458, DQ397908-DQ397912), Ae. aegypti (cytb:
7	AJ970943-AJ970958; ND4: AF203344-AF203366, AF334841-AF334859, AF334861-
8	AF334865), Ae. caspius (COI: FJ210902-FJ210908; COII: DQ300479-DQ300499), Ae.
9	vexans (COI: AY645241- AY645247; COII: AY645304- AY645309, GU229896); C. pipiens
10	(ND4: AY793688-AY793693, EF028084, EF030092, EF033661; COI: AJ557889, AJ557891,
11	AJ557892, AJ633083-AJ633086, AY33086, GQ255648-GQ255651, GQ255659- GQ25564,
12	GQ255666; COII: EU014281, EU014282, L344351); Culex sp. (ND4: AY793694-
13	AY7937003), C. tarsalis (nad4: EF125799-EF125862), An. aconitus (COI: AY423055,
14	DQ000253-DQ000264; COII: AJ194448-AJ194451, AJ547367-AJ547369, AY626951-
15	AY626978), An. funestus (cytb: AF062501-AF062511), An. gambiae (COI: AF020967,
16	AF020968, AF020970, AF020971, AF020973, AF020980, AF020988, AF020989,
17	AF020991-AF02093, AF020998, AF020999, AF021002, AF021003, AF021011-AF021023)
18	and An. maculipennis (COI: AF342716-AF342722, AF491682-AF491736).

Gene	Putative product	Locus tag in wPip(Pel)	Primer (5'-3')	Size (bp)	Number of alleles found in this study (accession numbers)	References
gatB	Glutamyl-tRNA(Gln) amidotransferase,	WPa_0087	gatB_F1-GAKTTAAAYCGYGCAGGBGTT	369	1	(Baldo et al. 2006)
	subunit B		gatB_R1-TGGYAAYTCRGGYAAAGATGA			
coxA	Cytochrome c oxidase, subunit I	WPa_0082	coxA_F1-TTGGRGCRATYAACTTTATAG	402	1	(Baldo et al. 2006)
			coxA_R1-CTAAAGACTTTKACRCCAGT			
hcpA	Conserved hypothetical protein	WPa_1214	hcpA_F1-GAAATARCAGTTGCTGCAAA	444	1	(Baldo et al. 2006)
			hcpA_R1-GAAAGTYRAGCAAGYTCTG			
ftsZ	Cell division protein	WPa_0577	ftsZ_F1-ATYATGGARCATATAAARGATAG	435	1	(Baldo et al. 2006)
			ftsZ_R1-TCRAGYAATGGATTRGATAT			
fbpA	Fructose-bisphosphate aldolase	WPa_1081	fbpA_F1-GCTGCTCCRCTTGGYWTGAT	429	1	(Baldo et al. 2006)
			fbpA_R1-CCRCCAGARAAAAYYACTATTC			
wsp	Surface protein	WPa_0937	81F-TGGTCCAATAAGTGATGAAGAAAC	602	1	(Braig et al. 1998)
			691R-AAAAATTAAACGCTACTCCA			
MutL	DNA mismatch repair protein	WPa_0278	F- ACTTCATTGCCCTTCCAGCT	1000-1,063	6 (HQ709389-HQ709394)	This study
			R -GGCATCAAATTAAGGGACA			
ank2	Ankyrin domain protein	WPa_0652	F-CTTCTTCTGTGAGTGTACGT	313-511	5 (AM397068-AM397072)	(Duron et al. 2007)
			R2-TCCATATCGATCTACTGCGT			
pk1	Ankyrin domain protein	WPa_0256 (1)	F-CCACTACATTGCGCTATAGA	1,334-1,349	5 (AM397075-AM397079)	(Sinkins et al. 2005)
		WPa_0313 (2)	R-ACAGTAGAACTACACTCCTCCA			(Duron et al. 2007)
		WPa_1306 (3)				
pk2	Ankyrin domain protein	WPa_0299 (1)	F-ATTATGATAAAGCTTGGTAAGAA	453	4 (AM397073-AM397073; DQ000471-DQ000472)	(Sinkins et al. 2005)
		WPa_0413 (2)	R-TTAGCCCTTCATAAATAGCTT			(Duron et al. 2007)
GP12	Phage related DNA methylase-like protein	WPa_0258 (1)	F-ATGAATTTAGCAATCCACTACT	1,215-1,302	7 (GU827985-GU827987; HQ709395-HQ709398)	(Atyame et al. in press)
		WPa_0317 (2)	R-TTACTAAATAACAGACATATTGCT			
		WPa_1310 (3)				
		WPa_0429 (4)				
GP15 (=vrlC)	Phage related probable secretory protein	WPa_1322	F1-ACCATTACAGAACTTGAGGA	1,511-1,538	7 (GU827988-GU827991; HQ709399-HQ709401)	(Duron, Fort, and Weill 2006)
			R1-TAGACGTTCATAGGCAACCA			(Atyame et al. in press)
			F2-ACCTGACTCTGCAGTACTTGA			
			R2-ACTGCTTCTCTCATAAATTCA			
RepA	Phage related replication protein	WPa_1312	Trle-Fl-ACTTTAGAGGGGGGGCCTTTCT	583-1,501	2 (AJ646884 ; AJ646887)	(Duron et al. 2005)
			Tr1e-R2- ACAAACAACGGCACAGATT			

Table S1. List of primers and characteristics of genes used to examine the *Wolbachia* polymorphism.

Mitochone	drial forward primers (5'-3')	Mitochondrial reverse primers (5'-3')					
1F	AATGAATTGCCTGATAAAAAGGA	417R	TGAAGAGGCAAAAGCTTGAGT				
161F ^a	GCTATTGGGTTCATACCCCAC	773 R ^a	GCTATTAATATTCAACCTAAG				
286F	TGGCTTGGTGCTTGAATAGGGT	1442R	AATGGCTGAAGTTTAGGCGAT				
1254F	ACTAATAGCCTTCAAAGCTGA	2123R	TGGATCTCCTCCAATTGGA				
2045F	AGCTGGTGCTATTACTATGT	3921R	AGTTAATCATCTAATAGGGGGCT				
2768F	TCCAGATAGTTACTTAGCATGA	4798R	AGCTCCAATAGCTCCTGT				
3738F	TTCATTAGATGACTGAAAGCA	5968R	TTAGGTCGAAACTAATTGCA				
4781F	ACAGGAGCTATTGGAGCT	7002R	CTTTTTTAGCAGGGTTTTATTC				
5949F	TGCAATTAGTTTCGACCTAA	7723R ^b	GGGTGGGATGGATTAGGATTGG				
6290F	CATCTTCAGTGTCATGCTCT	8112R ^b	GATTTGTGGTGTCAATGATA				
6981F ^b	GAATAAAACCCTGCTAAAAAAG	8871R	TGATTACCTAAGGCTCATGT				
$7702F^{b}$	CCAATCCTAATCCATCCCACCC	9259R	AGCAAGAGAAAGAGTTGTACGA				
7940F	TGAAACAATTTCCCATTCA	10099R	AATAAAACTAATATTCCTCCT				
8636F	TGAGCAACAGAAGAATAAGCA	11217R ^c	ACTAAAGGATTAGCAGGAATGA				
8781F	GTAATAATCCATATCCTCCT	12178R	TACGAGCGGTTGCTCAAACA				
9239F	CGTACAACTCTTTCTCTTGCT	12409R	TACTAAGGAACAAACTTATCCT				
9851F	AGAAATCTCTTTGTCACTAACT	13182R	TGAATGAGATATATACTGTCT				
10366F ^c	CTTTATTAGTAACTGTAAAAATTAC	13587R	TATTTTAAGGGATTAGCTTTAA				
10912F	ACAATGGATTTGAGGAGGA	13706R	TAATTAGAAATGAAATGTTAATCG				
11985F	AGGAGTACGATTAGTTTCAGCT	14067R	TTAAAGCTTAATTAGTAAAGTA				
12387F	AGGATAAGTTTGTTCCTTAGTAA	14998R	AGCAATGGGAAGGCTTACACT				
12856F	TCCAACATCGAGGTCGCAATC						
13338F	GCCGAATTCCTTATTTAAACCTTTC						
13566F	TTAAAGCTAATCCCTTAAAATA						
13802F	ACCCTGATACACAAGGTACA						
14793F	AATTCACACAAAAATTTACATGT						

Table S2. List of primers used to examine the *Culex pipiens* mitochondrial polymorphism. The name of the primers indicates their position in the

24 mitochondrial genome.^{a,b,c}, primers used to amplified fragments of the *ND2*, *ND5* and *cytb* genes, respectively. GenBank accession numbers:

- 25 ND2 (HQ709410-HQ709413), ND5 (HQ724607-HQ724613), cytb (HQ709402-HQ709409), complete mitochondrial genomes (HQ724614-
- 26 HQ724617).
- 27

Gene	No. of alleles ^a	Fragment size	% of VI ^b	$\pi^{ ext{b}}$	G+C content (%) ^b	Ka/Ks ^b	Intragenic recombination (Sawyer's test) ^a
MutL	6	960-1,023	7.1	0.03	35.2	0.25	Yes (P<10 ⁻⁴)
ank2	5	273-471	3.3	0.01	38.6	0.00	No (<i>P</i> =0.33)
pk1	5	1,292-1,307	16.2	0.07	33.7	0.17	Yes $(P < 10^{-4})$
pk2	4	409	11.2	0.03	38.3	0.04	Yes $(P < 10^{-4})$
GP12	7	1,193-1,278	7.9	0.03	37.5	0.05	Yes $(P < 10^{-4})$
GP15	8^{c}	1,470-1,497	12.4	0.04	37.6	0.12	Yes $(P < 10^{-4})$
RepA	2	544-1,462	0.0	0.00	32.6	0.00	not reliable

Table S3. Genetic characteristics of the seven polymorphic genes used for *w*Pip characterization. VI; number of variable sites; π : pairwise

31 nucleotide diversity based on the average of all pairwise comparisons; ^a Characteristics estimated considering indels in sequence alignments; ^b

32 characteristics assessed excluding indels; ^c including the null *GP15* wPip(JHB) allele. Note that primer regions were not considered in these

analyses.

Genes	MutL	ank2	pk1	pk2	GP12	GP15	RepA	
MutL		0.000***	0.000***	0.087	0.000***	0.000***	0.060	
ank2	0.966		0.000***	0.013	0.000***	0.000***	0.009	
pk1	0.966	0.999		0.020	0.000***	0.000***	0.010	
pk2	0.639	0.700	0.700		0.478	0.206	0.008	
GP12	0.914	0.967	0.967	0.600		0.000***	0.501	
GP15	0.911	0.999	0.999	0.700	0.999		0.058	
RepA	0.688	0.750	0.750	0.750	0.667	0.750		

Table S4. Linkage disequilibrium (LD) measures and tests of association between the *w*Pip genes. The upper half shows probabilities based on

38 the null hypothesis of random association of allelic diversity between loci. The lower half shows LD measures (D' values). ***, the null

39 hypothesis is rejected at $\alpha = 0.001$ taking into account a Bonferonni's adjustment for 21 comparisons.

Gene	Position, Direction of transcription	tRNA anticodon/Position	Start codon	End codon
t-RNA ^{Ile}	2-69, CW	GAU/31-33	_	_
t-RNA ^{Gln}	70-138, CCW	UUG/108-106	_	_
t-RNA ^{Met}	142-210, CW	CAU/172-174	_	_
ND2	211-1233, CW	_	ATC (Ile)	TAA
tRNA ^{Trp}	1235-1303, CW	UCA/1265-1267	_	_
tRNA ^{Cys}	1303-1369, CCW	GCA/1340-1338	_	_
tRNA ^{Tyr}	1382-1447, CCW	GUA/1416-1414	_	_
COI	1446-2983, CW	_	TCG (Ser)	Т
tRna ^{Leu}	2983-3049, CW	UAA/3012-3014	_	_
COII	3055-3739, CW	_	ATG (Met)	Т
tRNA ^{Lys}	3740-3810, CW	CUU/3770-3772	_	_
tRNA ^{Asp}	3821-3888, CW	GUC/3852-3854	_	_
ATPase8	3888-4050, CW	_	ATT (Ile)	TAA
ATPase6	4044-4724, CW	_	ATG (Met)	TAA
COIII	4724-5512, CW	_	ATG (Met)	TAA
tRNA ^{Gly}	5512-5578, CW	UCC/5543-5545	_	_
ND3	5578-5932, CW	_	ATT (Ile)	TAA
tRNA ^{Arg}	5931-5994, CW	UCG/5960-5962	_	_
tRNA ^{Ala}	5995-6060, CW	UGC/6024-6026	_	_
tRNA ^{Asn}	6061-6127, CW	GUU/6091-6093	_	_
tRNA ^{Ser}	6131-6197, CW	GCA/6170-6172	_	_
tRNA ^{Glu}	6198-6263, CW	UUC/6228-6230	_	_
tRNA ^{Phe}	6262-6328, CCW	GAA/6296-6294	_	_
ND5	6329-8071, CCW	_	GTG (Val)	TAA
tRNA ^{His}	8072-8137, CCW	GUG/8107-8105	_	_
ND4	8137-9480, CCW	_	ATG (Met)	TAA
ND4L	9474-9770, CCW	_	ATG (Met)	TAA
tRNA ^{Thr}	9776-9840, CW	UGU/9806-9808	_	_
tRNA ^{Pro}	9841-9906, CCW	UGG/9876-9874	_	_
ND6	9907-10427, CW	_	ATA (Met)	TAA
CytB	10428-11567, CW	_	ATG (Met)	TAA
tRNA ^{Ser}	11562-11627, CW	UGA/11590-11592	_	_
ND1	11646-12596, CCW	_	TTG (Phe)	TAA
tRNA ^{Leu}	12597-12663, CCW	UAG/12634-12632	_	_
Large rRNA	12664-13999, CCW	_	_	_
tRNA ^{Val}	14000-14071, CCW	UAC/14038-14036	_	_
Small rRNA	14072-14865, CCW	-	_	_
A + T rich region	14867-15587	_	_	_

Table S5. Summary of the *Culex pipiens* mitochondrial genome. Position: expressed in

43 nucleotides based on the Pel sequence. Direction of transcription: CW, clockwise; CCW,

⁴⁴ counterclockwise.

	Gene, position																						
Mitotype	ND2				ND5								cytb						Mosquito line				
	256	470	543	591	660	7,061	7,106	7,280	7,341	7,345	7,571	7,824	7,826	7,927	10,502	10,554	10,758	10,887	10,918	10,943	10,952	11,118	-
pi1	А	Т	С	Т	Т	Т	А	Т	G	С	G	А	С	А	А	А	G	G	G	С	А	А	Pel
pi2	G	-	-	-	-	-	-	-	-	-	-	G	-	-	-	G	-	-	-	-	-	-	Cot-A, Cot-B, Ma-B
pi3	G	-	-	-	-	-	-	-	-	Т	-	G	-	-	-	G	-	-	-	-	-	-	Ep-A, Ep-B
pi4	G	-	-	С	-	А	-	-	-	-	-	G	-	-	-	G	-	А	-	-	-	-	Ko, Tn
pi5	G	-	-	С	-	-	-	-	-	-	-	G	-	-	-	G	-	А	-	-	-	-	Bf-A
<i>pi</i> 6	G	-	-	-	А	-	G	-	-	-	-	G	Т	-	-	G	-	-	-	-	-	G	Au
pi7	G	-	-	-	А	-	-	-	-	-	-	G	Т	-	-	G	-	-	-	-	-	G	Lv
pi8	G	С	-	-	А	-	-	С	-	-	-	G	Т	G	-	G	-	-	-	-	-	G	Ke-A
<i>pi</i> 9	G	С	-	-	А	-	-	-	-	-	-	G	Т	-	-	G	-	-	-	-	-	G	Ke-B
<i>pi</i> 10	G	-	-	-	А	-	-	-	-	-	-	G	Т	-	G	G	-	-	-	-	-	G	Bf-B, Mc
<i>pi</i> 11	G	-	-	-	А	-	-	-	-	-	-	G	Т	-	G	G	-	-	-	-	G	G	Sl
<i>pi</i> 12	G	-	G	-	А	-	-	-	А	-	А	G	Т	-	-	G	-	-	А	-	-	-	Is
<i>pi</i> 13	G	-	-	-	А	-	-	-	-	-	-	G	Т	-	-	G	А	-	-	Т	-	-	Ka-C
<i>pi</i> 14	G	-	-	-	А	-	-	-	-	-	-	G	Т	-	-	G	-	-	-	Т	-	-	Ma-A

Table S6: Nucleotide polymorphism in the ND2, ND5 and cytb mitochondrial genes of Culex pipiens. Mosquito lines are listed according to

48 mitotype (*pi*1 to *pi*14). Only polymorphic site are indicated, and a dash indicates similarity with the top sequence. Position: expressed in

49 nucleotides based on the complete mitochondrial sequence of the Pel *C. pipiens* line.

50 Supplementary figures

Figure S1. Wolbachia phylogeny constructed using Bayesian inferences on concatenated sequences of the five MLST genes gatB, coxA, hcpA, ftsZ and hcpA. Wolbachia of major supergroups (A, B, D, F and H) were included in the analysis to delineate the wPip group (highlighted). Host species of Wolbachia are reported, followed by the name of the Wolbachia strain. The scale bar is in units of substitutions/site.

56

Figure S2. Examples of recombination breakpoints along the *pk1* (A, B), *pk2* (C, D, E) and *GP12* (F) sequences. For each alignment, only polymorphic sites around the breakpoints are shown. Polymorphisms shared with the underlined sequence are highlighted in grey. Arrows indicated the significant breakpoints and the nucleotide position detected by Sawyer's procedure.

62

Figure S3. Mapping of the 13 genes examined in this study on the *w*Pip(Pel) genome and on the five major contigs of the *w*Pip(JHB) genome. Black boxes designate prophage genes, or genes inserted in phage regions. Lines connect orthologous genes. The *w*Pip(JHB) genome description corresponds to the current situation and could change when the assembling is achieved.

68

Figure S4. *Wolbachia* phylogenies constructed with six *w*Pip polymorphic genes. A: *MutL*;
B: *ank2*; C: *pk1*; D: *pk2*; E: *GP12*; F: *GP15*. The phylogeny of the *RepA* gene was not
performed because the polymorphism with this gene is only based on the presence or the
absence of the transposon *Tr1*. The scale bar is in units of substitutions/site.

74	Figure S5. Map of the Culex pipiens mitochondrial genome. The map has been linearized and
75	nucleotide 1 is arbitrary allocated to tRNA ^{Ile} transcription start. All genes are indicated as
76	boxes above (transcription from left to right) or below (transcription from right to left) the
77	baseline. tRNAs are represented by the single-letter code for the cognate amino acid. Sites
78	found polymorphic between the five C. pipiens mtDNA genomes (without the A+T rich
79	region) are indicated by stars.

Figure S3

ΙМ W

98

99

ATPase8

15

 \star

103 Literature Cited

- 104 Atyame, C., O. Duron, P. Tortosa, N. Pasteur, P. Fort, and M. Weill. 2011. Multiple
- 105 *Wolbachia* determinants control the evolution of cytoplasmic incompatibilities in *Culex*
- 106 *pipiens* mosquito populations. Mol Ecol (in press).
- 107 Baldo, L., J. C. Dunning Hotopp, K. A. Jolley, S. R. Bordenstein, S. A. Biber, R. R.
- 108 Choudhury, C. Hayashi, M. C. Maiden, H. Tettelin, and J. H. Werren. 2006. Multilocus
- sequence typing system for the endosymbiont *Wolbachia pipientis*. Appl Environ
 Microbiol **72** :7098-7110.
- 111 Braig, H. R., W. Zhou, S. L. Dobson, and S. L. O'Neill. 1998. Cloning and characterization of
- a gene encoding the major surface protein of the bacterial endosymbiont *Wolbachia*
- 113 *pipientis.* J Bacteriol **180** :2373-2378.
- 114 Duron, O., A. Boureux, P. Echaubard, A. Berthomieu, C. Berticat, P. Fort, and M. Weill.
- 115 2007. Variability and expression of ankyrin domain genes in *Wolbachia* variants

116 infecting the mosquito *Culex pipiens*. J Bacteriol **189** :4442-4448.

- 117 Duron, O., P. Fort, and M. Weill. 2006. Hypervariable prophage WO sequences describe an
- unexpected high number of Wolbachia variants in the mosquito *Culex pipiens*. Proc Biol
 Sci 273 :495-502.
- 120 Duron, O., J. Lagnel, M. Raymond, K. Bourtzis, P. Fort, and M. Weill. 2005. Transposable
- element polymorphism of *Wolbachia* in the mosquito *Culex pipiens*: evidence of genetic
 diversity, superinfection and recombination. Mol Ecol 14 :1561-1573.
- 123 Sinkins, S. P., T. Walker, A. R. Lynd, A. R. Steven, B. L. Makepeace, H. C. Godfray, and J.
- 124 Parkhill. 2005. *Wolbachia* variability and host effects on crossing type in *Culex*
- 125 *mosquitoes*. Nature **436** :257-260.