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Abstract  
Ant-eating mammals represent a textbook example of convergent evolution. Among them, 

anteaters and pangolins exhibit the most extreme convergent phenotypes with complete tooth 

loss, elongated skulls, protruding tongues, hypertrophied salivary glands producing large 

amounts of saliva, and powerful claws for ripping open ant and termite nests. However, 

comparative genomic analyses have shown that anteaters and pangolins differ in their 

chitinase gene (CHIA) repertoires, which potentially degrade the chitinous exoskeletons of 

ingested ants and termites. While the southern tamandua (Tamandua tetradactyla) harbors 

four functional CHIA paralogs (CHIA1-4), Asian pangolins (Manis spp.) have only one 

functional paralog (CHIA5). Here, we performed a comparative transcriptomic analysis of 

salivary glands in 33 placental species, including 16 novel transcriptomes from ant-eating 

species and close relatives. Our results suggest that salivary glands play an important role in 

adaptation to an insect-based diet, as expression of different CHIA paralogs is observed in 

insectivorous species. Furthermore, convergently-evolved pangolins and anteaters express 

different chitinases in their digestive tracts. In the Malayan pangolin, CHIA5 is overexpressed 

in all major digestive organs, whereas in the southern tamandua, all four functional paralogs 

are expressed, at very high levels for CHIA1 and CHIA2 in the pancreas, and for CHIA3 and 

CHIA4 in the salivary glands, stomach, liver, and pancreas. Overall, our results demonstrate 

that divergent molecular mechanisms underlie convergent adaptation to the ant-eating diet in 

pangolins and anteaters. This study highlights the role of historical contingency and 

molecular tinkering of the chitin-digestive enzyme toolkit in this classic example of 

convergent evolution. 
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Introduction 
The phenomenon of evolutionary convergence is a fascinating process in which distantly 

related species independently acquire similar characteristics in response to the same selection 

pressures. A fundamental question famously illustrated by the debate between Stephen Jay 

Gould (Gould 2002) and Simon Conway Morris (Conway Morris 1999) resides in the relative 

contribution of historical contingency and evolutionary convergence in the evolution of 

biodiversity. While Gould (Gould 1990; 2002) argued that the evolution of species strongly 

depends on the characteristics inherited from their ancestors (historical contingency), 

Conway Morris (Conway Morris 1999) retorted that convergent evolution is one of the 

dominant processes leading to biodiversity evolution. Despite the huge diversity of organisms 

found on Earth and the numerous potential possibilities to adapt to similar conditions, the 

strong deterministic force of natural selection led to numerous cases of recurrent phenotypic 

adaptations (Losos 2011; McGhee 2011; Losos 2018). However, the role of historical 

contingency and evolutionary tinkering in convergent evolution has long been recognized, 

with evolution proceeding from available material through natural selection often leading to 

structural and functional imperfections (Jacob 1977). As first pointed out by François Jacob 

(Jacob 1977), molecular tinkering seems to be particularly frequent and has shaped the 

evolutionary history of a number of protein families (McGlothlin et al. 2016; Pillai et al. 

2020; Xie et al. 2021). Indeed, if in some cases, convergent phenotypes can be associated 

with similar or identical mutations in the same genes occurring in independent lineages 

(Arendt and Reznick 2008), in other cases, they appear to arise by diverse molecular paths 

(e.g. Christin et al. 2010). Hence, both historical contingency and evolutionary convergence 

seems to have impacted the evolution of the current biodiversity and the major question relies 

on evaluating the relative impact of these two evolutionary processes (Blount et al. 2018). 

A notable example of convergent evolution is the adaptation to the specialized ant- 

and/or termite-eating diet (i.e. myrmecophagy) in placental mammals (Reiss 2001). Within 

placental mammals, over 200 species include ants and termites in their regime, but only 22 of 

them can be considered as specialized myrmecophagous mammals, eating more than 90% of 

social insects (Redford 1987). Historically, based on shared morphological characteristics, 

ant-eating mammals were considered monophyletic (i.e. Edentata; Novacek 1992; O’Leary et 

al. 2013), but molecular phylogenetic evidence now strongly supports their polyphyly (e.g.  

Delsuc et al. 2002; Meredith et al. 2011; Springer et al. 2013). This highly-specialized diet 

has indeed independently evolved in five placental orders: armadillos (Cingulata), anteaters 
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(Pilosa), aardvarks (Tubulidentata), pangolins (Pholidota), and aardwolves (Carnivora). As a 

consequence of foraging for small-sized prey (Redford 1987), similar morphological 

adaptations have evolved in these mammalian species such as powerful claws used to dig into 

ant and termite nests, tooth reduction culminating in complete tooth loss in anteaters and 

pangolins (Ferreira-Cardoso et al. 2019), an elongated muzzle with an extensible tongue 

(Ferreira-Cardoso et al. 2020), and viscous saliva produced by hypertrophied salivary glands 

(Reiss 2001). Due to strong energetic constraints imposed by a nutritionally poor diet, 

myrmecophagous mammals also share relatively low metabolic rates and might thus require 

specific adaptations to extract nutrients from the chitinous exoskeletons of their prey (McNab 

1984). It has long been shown that chitinase enzymes are present in the digestive tract of 

mammals and vertebrates more broadly (Jeuniaux 1961; Jeuniaux 1966; Jeuniaux 1971; 

Jeuniaux and Cornelius 1997). More recent studies have indeed shown that chitinase genes 

are present in the mammalian genome and may play an important digestive function in 

insectivorous species (Bussink et al. 2007; Emerling et al. 2018; Janiak et al. 2018; Wang et 

al. 2020; Cheng et al. 2022). Elevated levels of digestive enzyme gene expression have 

notably been observed in placental mammal salivary glands. For instance in bat salivary 

glands, studies have shown that dietary adaptations can be associated with elevated 

expression levels in carbohydrase, lipase, and protease genes (Francischetti et al. 2013; 

Phillips et al. 2014; Vandewege et al. 2020). 

In placental mammals, the salivary glands are composed of three major gland pairs 

(parotid, sublingual, and submandibular) and hundreds of minor salivary glands (Tucker 

1958). In most myrmecophagous placental lineages, it has been shown that hypertrophied 

submandibular salivary glands are the primary source of salivary production. These enlarged 

horseshoe-shaped glands extend posteriorly along the side of the neck and ventrally over the 

chest. In the Malayan pangolin (Manis javanica), recent transcriptomic (Ma et al. 2017; Ma 

et al. 2019) and proteomic (Zhang et al. 2019) studies have shown that genes associated with 

digestive enzymes are highly expressed in salivary glands, which supports the hypothesis that 

the enlarged submandibular glands play an important functional role in social insect 

digestion. This result also found support in a study on the molecular evolution of the chitinase 

genes across 107 placental mammals that revealed the likely existence of a repertoire of five 

functional paralogous chitinase (CHIA, acidic mammalian chitinase) genes in the placental 

ancestor, which was subsequently shaped through multiple pseudogenization events 

associated with dietary adaptation during the placental radiation (Emerling et al. 2018). The 

widespread gene loss observed in carnivorous and herbivorous lineages resulted in a general 
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positive correlation between the number of functional CHIA paralogs and the percentage of 

invertebrates in the diet across placentals (Emerling et al. 2018). Indeed, mammals with a low 

proportion of insects in their diet present none or a few functional CHIA paralogs and those 

with a high proportion of insects in their diet generally have retained four or five functional 

CHIA paralogs (Emerling et al. 2018; Janiak et al. 2018; Wang et al. 2020). Among 

mammals, pangolins appear as an exception as the two investigated species (M. javanica and 

Manis pentadactyla) possess only one functional CHIA paralog (CHIA5) whereas other 

myrmecophagous species such as the southern tamandua (Tamandua tetradactyla) and the 

aardvark (Orycteropus afer) possess respectively four (CHIA1-4) and five (CHIA1-5) 

functional paralogs (Emerling et al. 2018). The presence of the sole CHIA5 in pangolins was 

interpreted as the consequence of historical contingency with the probable loss of CHIA1-4 

functionality in the last common ancestor of Pholidota and Carnivora (Emerling et al. 2018). 

In Carnivora, it has recently been confirmed that a non insect-based diet has caused structural 

and functional changes in the CHIA gene repertoire resulting in multiple losses of function 

with only few species including insects in their diet retaining a fully functional CHIA5 gene 

(Tabata et al. 2022). The fact that CHIA5 was found to be highly expressed in the main 

digestive organs of the Malayan pangolin (Ma et al. 2017; Ma et al. 2019; Cheng et al. 2022) 

suggests that pangolins might compensate for their reduced chitinase repertoire by an 

increased ubiquitous expression of their only remaining functional paralog in multiple organs.  

To test this hypothesis, we first reconstructed the detailed evolutionary history of the 

chitinase gene family in mammals. Then, we conducted a comparative transcriptomic 

analysis of chitinase gene expression in salivary glands of 33 placental mammal species 

including 16 newly generated transcriptomes from myrmecophagous placentals and other 

mammalian species. Finally, we compared the expression of chitinase paralogs in different 

organs between the nine-banded armadillo (Dasypus novemcinctus), the Malayan pangolin 

(M. javanica), and the southern tamandua (T. tetradactyla) for which we produced 13 new 

transcriptomes from nine additional organs. Our results shed light on the molecular 

underpinnings of convergent evolution in ant-eating mammals by revealing that divergent 

paths of chitinase molecular evolution underlie dietary convergence between anteaters and 

pangolins.  
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Results 
Mammalian chitinase gene family evolution 

The reconciled maximum likelihood tree of mammalian chitinase genes is presented in Figure 

1A. The evolution of this gene family constituted by nine paralogs is characterized by the 

presence of numerous inferred gene losses with 384 speciation events followed by gene loss 

and 48 gene duplications as estimated by the gene tree/species tree reconciliation algorithm 

of GeneRax. At the base of the reconciled gene tree, we found the clade CHIA1-2/OVGP1 

(optimal root inferred by the reconciliation performed with TreeRecs) followed by a 

duplication separating the CHIT1/CHI3L1-2 and CHIA3-5 groups of paralogs. Within the 

CHIT1/CHI3L clade, two consecutive duplications gave rise to CHIT1, then CHI3L1 and 

CHI3L2. In the CHIA3-5 clade, a first duplication separated CHIA3 from CHIA4 and CHIA5, 

which were duplicated subsequently. Marsupial CHIA4 sequences were located at the base of 

the CHIA4-5 clade suggesting that this duplication might be specific to placentals. The 

CHIA5 sequences of chiropterans were found at the base of the CHIA5 clade. The duplication 

that gave rise to the CHIA4 and CHIA5 genes appears recent and specific to eutherians 

(marsupials and placentals) since no other taxon was found within these clades. This scenario 

of chitinase gene evolution is consistent with synteny analysis showing physical proximity of 

CHIA1-2 and OVGP1 on one hand, and CHIA3-5 on the other hand (Fig. 1B), which implies 

that chitinase genes evolved by successive tandem duplications. However, evidence of gene 

conversion between the two more recent duplicates (CHIA4 and CHIA5) at least in some taxa 

suggests that further data are necessary to fully disentangle the origins of these two paralogs 

(Emerling et al. 2018). Within the CHIA5 clade of Muroidea (Spalacidae, Cricetidae and 

Muridae), we found four subclades (named here CHIA5a-d) representing potential 

duplications specific to the muroid rodent species represented in our dataset. From the 

CHIA5a paralog, two consecutive duplications gave rise to the three CHIA5b-d paralogs 

represented by long branches, characterizing rapidly evolving sequences. The duplication 

giving rise to the CHIA5c and CHIA5d paralogs concerns only the Cricetidae and Muridae, 

Nannospalax galili (Spalacidae) being present only in the clade of the CHIA5b paralogous 

gene.  
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Figure 1: A. Mammalian chitinase gene family tree reconstructed using a maximum 
likelihood gene-tree/species-tree reconciliation approach on protein sequences. The nine 
chitinase paralogs are indicated on the outer circle. Scale bar represents the mean number of 
amino acid substitutions per site. B. Synteny of the nine chitinase paralogs in humans (Homo 
sapiens), tarsier (Carlito syrichta), nine-banded armadillo (Dasypus novemcinctus) and the 
two main focal convergent ant-eating species: the southern tamandua (Tamandua 
tetradactyla) and the Malayan pangolin (Manis javanica). Assembly names and accession 
numbers are indicated below species names. Arrows represent genes with scaffold/contig 
names and BLAST hit positions indicated below. Arrow direction indicates gene transcription 
direction as inferred in Genomicus v100.01 (Nguyen et al. 2022) for genes located on short 
contigs. Ψ symbols indicate pseudogenes as determined in Emerling et al. (2018). Genes with 
negative BLAST results were not represented and are probably not functional or absent. 
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Ancestral sequences comparison 

The ancestral amino acid sequences of the nine chitinase paralogs have been reconstructed 

from the reconciled mammalian gene tree and compared to gain further insight into the 

potential function of the enzymes they encode (Fig. 2). The alignment of predicted amino 

acid sequences locates the chitinolytic domain between positions 133 and 140 with the 

preserved pattern DXXDXDXE. The ancestral sequences of CHI3L1 and CHI3L2, as all 

contemporary protein sequences of these genes, have a mutated chitinolytic domain with 

absence of a glutamic acid at position 140 (Fig. 2A), which is the active proton-donor site 

necessary for chitin hydrolysis (Olland et al. 2009; Hamid et al. 2013). This indicates that the 

ability to degrade chitin has likely been lost before the duplication leading to CHI3L1 and 

CHI3L2 (Fig. 2B). It is also the case for the ancestral sequences of the muroid-specific 

CHIA5b-d, which thus cannot degrade chitin (data not shown). The ancestral sequence of 

OVGP1 also presents a mutated chitinolytic site although the glutamic acid in position 140 is 

present (Fig. 2A). The evolution of the different chitinases therefore seems to be related to 

changes in their active site. The six cysteine residues allowing the binding to chitin are found 

at positions 371, 418, 445, 455, 457 and 458 (Fig. 2C). The absence of one of these cysteines 

prevents binding to chitin (Tjoelker et al., 2000) as this is the case in the ancestral OVGP1 

protein where the last four cysteine residues are changed (Fig. 2C). The other ancestral 

sequences present the six conserved cysteine residues and thus can bind to chitin (Fig. 2C).  
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Figure 2: Comparison of predicted ancestral sequences of the nine mammalian chitinase 
paralogs. A. Conserved residues of the canonical chitinolytic domain active site 
(DXXDXDXE). Arrows indicate paralogs in which changes occurred in the active site. B. 
Summary of the evolution of chitinase paralogs functionality. C. Conserved cysteine residues 
of the chitin-binding domain. The arrow indicates OVGP1 in which the last four cysteines 
have been replaced. 
 

 

Chitinase gene expression in mammalian salivary glands 

To test the hypothesis that salivary glands play an important functional role in the digestion 

of ants and termites in ant-eating mammals, we analyzed the gene expression profiles of the 

nine chitinase paralogs revealed by the gene family tree reconstruction in 40 salivary gland 

transcriptomes (Fig. 3). CHIA1 was expressed only in the elephant shrew (Elephantulus 

myurus; 23.22 normalized read counts [NC]). CHIA2 was expressed only in the wild boar 

(Sus scrofa; 48.84 NC). CHIA3 was expressed in the two insectivorous California leaf-nosed 

bats (Macrotus californicus; 367.70, and 35.03 NC) and in all three southern tamandua 

individuals (T. tetradactyla; 48.66, 41.52, and 15.14 NC). CHIA4 was also highly expressed 

in all three southern tamandua individuals (565.61, 214.83, and 180.26 NC), in the giant 

anteater (M. tridactyla; 50.74 NC), and in the two California leaf-nosed bats (M. californicus; 

17,224.06, and 16,880.24  NC). Expression of CHIA5 was much higher in the two Malayan 

pangolin individuals (Manis javanica; 196,778.69 and 729.18 NC) and Thomas’s nectar bat 
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(Hsunycteris thomasi; 7,301.82 NC) than in the three other species in which we detected 

expression of this gene: the domestic mouse (Mus musculus; 40.15 NC), common genet 

(Genetta genetta; 132.64 NC), and wild boar (Sus scrofa; 152.20 NC). CHIT1 was expressed 

in many species (12 out of 40 samples) with NC values ranging from 46.76 NC in a single 

southern tamandua (T. tetradactyla) individual to 115,739.25 NC in the short-tailed shrew 

tenrec (Microgale brevicaudata). CHI3L1 was expressed in most species (24 out of 40 

samples) with values ranging from 61.68 NC in the giant anteater (M. tridactyla) to 1,297.01 

NC in a Malayan pangolin (M. javanica) individual. CHI3L2 was expressed in human (H. 

sapiens; 1334.07 NC), wild boar (S. scrofa; 246.41 NC), elephant shrew (E. myurus; 94.65 

NC), and common tenrec (Tenrec ecaudatus; 68.62 NC). OVGP1 was only found expressed 

at very low levels in domestic dog (Canis lupus familiaris; 6.80 NC), human (H. sapiens; 

15.33 NC), one of the two Malayan pangolins (M. javanica; 4.99 NC) and wild boar (S. 

scrofa; 17.84 NC). Finally, the southern aardwolf (P. cristatus), Norway rat (Rattus 

norvegicus), Parnell's mustached bat (Pteronotus parnellii) and six phyllostomid bat species 

(Carollia sowelli, Centurio senex, Glossophaga commissarisi, Sturnira hondurensis, 

Trachops cirrhosus, and Uroderma bilobatum) did not appear to express any of the nine 

chitinase gene paralogs in any of our salivary gland samples. 

 

 
Figure 3: Comparative expression of the nine chitinase paralogs in 40 mammalian salivary 
gland transcriptomes. The 33 species are presented in the phylogenetic context covering the 
four major placental clades: Afrotheria (AFR), Xenarthra (XEN), Euarchontoglires (EUA), 
and Laurasiatheria (LAU). The chronogram was extracted from www.timetree.org (Kumar et 
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al. 2022). Non-functional pseudogenes of the three focal species (in bold) are represented by 
the Ψ symbol: nine-banded armadillo (Dasypus novemcinctus), southern tamandua 
(Tamandua tetradactyla) and Malayan pangolin (Manis javanica). Expression level is 
represented as log10 (Normalized Counts + 1). Asterisks indicate the 16 new transcriptomes 
produced in this study. Silhouettes were obtained from www.phylopic.org.  
 

 

Chitinase gene expression in additional digestive and non-digestive organs 

The expression level of the nine chitinase paralogs in several organs was compared among 

three species including an insectivorous xenarthran (the nine-banded armadillo; D. 

novemcinctus) and two of the main convergent myrmecophagous species (the southern 

anteater; T. tetradactyla, and the Malayan pangolin; M. javanica) (Fig. 4). This analysis 

revealed marked differences in expression level of these genes among the three species and 

among their digestive and non-digestive organs. CHIT1 was expressed in all tissues in M. 

javanica, in the testes, tongue, salivary glands, and small intestine in T. tetradactyla, and in 

the cerebellum, lungs, salivary glands, and liver in D. novemcinctus. CHI3L1 was found to be 

expressed in the majority of digestive and non-digestive tissues in all three species. CHI3L2 

is non-functional or even absent in the genome of these three species and was therefore not 

expressed. OVGP1 was only weakly expressed in the lungs and salivary glands of M. 

javanica (2.22 and 4.99 NC, respectively). 
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Figure 4: Comparative expression of the nine chitinase paralogs in 72 transcriptomes from 
different organs of the three focal species: the nine-banded armadillo (Dasypus 
novemcinctus), the Malayan pangolin (Manis javanica), and the southern tamandua 
(Tamandua tetradactyla). Non-functional pseudogenes are represented by the Ψ symbol and 
hatched background. Boxes indicate organs of the digestive tract. Expression level is 
represented as log10 (Normalized Counts + 1). Silhouettes were obtained from 
www.phylopic.org.  
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In the nine-banded armadillo (D. novemcinctus), although only CHIA1 is pseudogenized and 

therefore logically not expressed, we did not detect any expression of CHIA2, CHIA3, and 

CHIA4 in the tissues studied here, and CHIA5 was only weakly expressed in one spleen 

sample (51.90 NC) (Fig. 4). In the Malayan pangolin (M. javanica), whereas CHIA1-4 are 

non-functional and consequently not expressed, CHIA5 was found expressed in all digestive 

organs with particularly high levels in the stomach (377,324.73 and 735,264.20 NC) and 

salivary glands (196,778.69 and 729.18 NC), and at milder levels in the tongue (121.24 NC), 

liver (254.79 NC on average when expressed), pancreas (168.64 and 39.33 NC), large 

intestine (238.45 and 79.32 NC), and small intestine (847.51 and 13.72 NC), but also in skin 

(178.95 NC) and spleen (12.06 NC) samples. Conversely, in the southern tamandua (T. 

tetradactyla), only CHIA5 is pseudogenized and accordingly not expressed (Fig. 4). CHIA1 

was found highly expressed in the pancreas (64,443.05 NC) and weakly expressed in testes 

(22.74 and 14.73 NC), and CHIA2 also had very high expression in the pancreas 

(1,589,834.39 NC), and low expression in testes (36.51 and 34.52 NC) and lungs (8.22 NC). 

CHIA3 was also expressed in the pancreas (359.03 NC), testes (241.79 and 35.42 NC), 

tongue (39.53 and 12.44 NC), salivary glands (48.66, 41.52, and 15.14 NC), and liver (32.40 

NC). Finally, CHIA4 was expressed in the testes (19.48 and 14.59 NC), spleen (109.97 and 

73.31 NC), lungs (340.84 NC), salivary glands (565.61, 214.83, and 180.26 NC), and 

glandular stomach (116.11 NC).  

 

 

Discussion 
Evolution of chitinase paralogs towards different functions 

Chitinases have long been suggested to play an important role in mammalian insect digestion 

(Jeuniaux 1961; Jeuniaux 1966; Jeuniaux 1971; Jeuniaux and Cornelius 1997). Phylogenetic 

analyses of the Glycosyl Hydrolase gene family (GH18), which comprises genes encoding 

chitinase-like proteins, have revealed a dynamic evolutionary history despite a high degree of 

synteny among mammals (Bussink et al. 2007; Hussain and Wilson 2013). Our maximum 

likelihood phylogenetic analyses recovered nine functional paralogous chitinase gene 

sequences in mammalian genomes (Fig. 1A). In addition to the five previously characterized 

CHIA paralogs (Emerling et al. 2018; Janiak et al. 2018), we were able to identify an 

additional gene, OVGP1, which is most closely related to the previously characterized CHIA1 
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and CHIA2 genes. In mammals, OVGP1 plays a role in fertilization and embryonic 

development (Buhi 2002; Saint-Dizier et al. 2014; Algarra et al. 2016; Laheri et al. 2018). 

However, other aliases for OVGP1 include Mucin 9 and CHIT5 (www.genecards.org) 

suggesting a possible digestive function. This result was further confirmed by synteny 

analyses suggesting a common origin by tandem duplication for CHIA1-2 and OVGP1 within 

the conserved chromosomal cluster that also includes CHIA3-5 and CHI3L2 (Fig. 1B). 

Comparison of the ancestral amino acid sequences of the nine chitinase paralogs revealed 

differences in their ability to bind and degrade chitin (Fig. 2), suggesting that these paralogs 

have evolved towards different functional specializations. The evolution of chitinase-like 

proteins was accompanied by a loss of enzymatic activity for chitin hydrolysis, which 

occurred several times independently (Bussink et al. 2007; Funkhouser and Aronson 2007; 

Hussain and Wilson 2013; Fig. 2B). CHI3L1 and CHI3L2, which are expressed in various 

cell types including macrophages and synovial cells, play roles in cell proliferation and 

immune response (Recklies et al. 2002; Areshkov et al. 2011; Lee et al. 2011). In contrast to 

these chitinase-like proteins, CHIT1 and the five CHIAs are able to degrade chitin. In 

humans, CHIT1 is expressed in macrophages and neutrophils and is suspected to be involved 

in the defense against chitin-containing pathogens such as fungi (Gordon-Thomson et al. 

2009; Lee et al. 2011). In addition to their role in chitin digestion (Boot et al. 2001), CHIAs 

are also suggested to play a role in the inflammatory response (Lee et al. 2011) and are 

expressed in non-digestive tissues, in agreement with our comparative transcriptomic results. 

Thus, it has been proposed that the expansion of the chitinase gene family is related to the 

emergence of the innate and adaptive immune systems in vertebrates (Funkhouser and 

Aronson 2007). 

CHIA genes specific to muroid rodents and characterized by rapidly evolving 

sequences have also been described as chitinase-like rodent-specific (CHILrs) enzymes  

(Bussink et al. 2007; Hussain and Wilson 2013). These enzymes also appear to have evolved 

for functions in the immune response (Lee et al. 2011; Hussain and Wilson 2013). CHIA5b 

cannot bind to chitin, unlike CHIA5c and CHIA5d, suggesting different roles for these three 

paralogous proteins. The evolution of the different CHIA1-5 genes has involved changes in 

their catalytic sites, which have consequences for the secondary structure of enzymes and 

potentially affect their optimal pH or function, as it has recently been shown for CHIA5 in 

Carnivora (Tabata et al. 2022). Experimental testing of the chitin degrading activity on 

different substrates and at different pH of enzymes produced from the ancestral sequences 

reconstructed for each of the five CHIA paralogs would allow a better understanding of their 
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enzymatic activity. Studying the potential binding of these enzymes to other substrates would 

shed more light on their functional roles. For example, changing a cysteine in the chitin-

binding domain prevents binding to this substrate but not to tri-N-acetyl-chitotriose (Tjoelker 

et al. 2000), a compound derived from chitin with antioxidant properties (Chen et al. 2003; 

Salgaonkar et al. 2015). Such functional assays, complemented by transcriptomic data to 

determine their expression profile in different tissues and organs (as previously done in the 

Malayan pangolin; Yusoff et al. 2016; Ma et al. 2017; Ma et al. 2019; Cheng et al. 2022), 

may help to decipher their respective roles in mammalian digestion (see below). 

 

Impact of historical contingency and molecular tinkering on chitinase evolution and 

expression  

In the specific case of adaptation to myrmecophagy, comparative genomic and transcriptomic 

analyses of these chitinase genes, particularly the chitin-degrading CHIAs, have led to a 

better understanding of how convergent adaptation to myrmecophagy in placentals occurs at 

the molecular level (Emerling et al. 2018; Cheng et al. 2022). On the one hand, anteaters 

(Pilosa; Vermilingua) likely inherited five CHIA genes from an insectivorous ancestor 

(Emerling et al. 2018), but then the CHIA5 gene was lost. In the southern tamandua (T. 

tetradactyla), the inactivating mutations of CHIA5 were identified and the estimated 

inactivation time of this gene was 6.8 Ma, subsequent to the origin of Vermilingua (34.2 Ma) 

and after the divergence with the giant anteater (M. tridactyla) at 11.3 Ma, suggesting a loss 

specific to lesser anteaters of the genus Tamandua (Emerling et al. 2018). In our study this 

gene was not found to be expressed in the salivary glands of the giant anteater. On the other 

hand, CHIA5 is functional in insectivorous carnivores (Carnivora) and pangolins (Pholidota), 

whereas CHIA1-4 are pseudogenized (Emerling et al. 2018; Tabata et al. 2022). Similar 

inactivating mutations have been observed in the CHIA1 gene in carnivores and pangolins 

and dated to at least 67 Ma, well before the origin of carnivores (46.2 Ma) and pangolins 

(26.5 Ma) (Emerling et al. 2018). Thus, despite relying on a fully myrmecophagous diet, 

pangolins have only one functional CHIA gene, likely due to a historical contingency related 

to their common inheritance with carnivores. These analyses have thus revealed contrasting 

pseudogenization events between convergent myrmecophagous species, with lesser anteaters 

(genus Tamandua) retaining four out of the five functional chitin-degrading CHIA genes 

(CHIA1-4), while the Malayan pangolin (M. javanica) inherited only the fifth one (CHIA5). 

This peculiar evolutionary history raised the question whether the Malayan pangolin might 
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compensate for the paucity of its functional chitinase gene repertoire by overexpressing 

CHIA5 in different digestive organs.  

Since the presence of enlarged salivary glands is a hallmark of convergent ant-eating 

mammals, ensuring massive production of saliva to help catch and potentially digest prey, we 

first investigated chitinase gene expression in mammalian salivary glands. Our comparative 

transcriptomic study spanning a diversity of species with different diets revealed that, among 

ant-eating mammals, the Malayan pangolin (M. javanica), the southern tamandua (T. 

tetradactyla), and the giant anteater (M. tridactyla) all express one or more chitin-degrading 

genes in their salivary glands. More specifically, we found that CHIA1 and CHIA2 were 

almost never expressed in mammalian salivary glands. In contrast, CHIA4 was found to be 

expressed in the giant anteater (M. tridactyla) and expression of both CHIA3 and CHIA4was 

observed in the three southern tamandua (T. tetradactyla) individuals surveyed. Apart from 

anteaters, these two chitinase genes were found to be highly expressed only in the two 

individuals of the insectivorous California leaf-nosed bat (M. californicus), but not in any of 

the other 11 bat species including insectivorous species such as M. myotis, P. parnellii, and L. 

evotis (Fig. 3). . A possible explanation is that these genes have been pseudogenized in many 

of these bat species, which would be concordant with the findings of comparative genomic 

studies reporting widespread pseudogenizations of CHIA paralogs across multiple bat species 

(Emerling et al. 2018) with complete loss of CHIA1-5 function in the vampire bat for instance 

(Wang et al. 2020). However, although CHIA4 and CHIA5 appear to be functional in the 

insectivorous little brown myotis (M. lucifugus; Emerling et al. 2018; Wang et al. 2020), we 

did not observe expression of these genes in the salivary gland transcriptome we analyzed. 

Also, CHIA5 was found to be highly expressed in Thomas’s nectar bat (H. thomasi). 

Although this bat species feeds mostly on nectar and fruits, its diet also includes a substantial 

part of insects suggesting that CHIA5 might play a role in chitin digestion in its salivary 

glands. Transcriptomic analyses of additional digestive tissues besides salivary glands in bats 

(Vandewege et al. 2020) may further clarify this pattern since chitinolytic activity has 

previously been reported in the stomachs of seven insectivorous bat species (Strobel et al. 

2013). Finally, we were able to confirm the hypothesis implying an overexpression of the 

only functional CHIA gene possessed by the Malayan pangolin. Indeed, salivary gland 

expression profiles of CHIA5 in M. javanica were much higher than in the four other species 

(Thomas’s nectar bat, mouse, genet and wild boar) in which we detected expression of this 

gene, but also substantially higher than the expression of any other chitin-degrading CHIA in 

the 32 other mammalian species considered. Overall, our chitinase gene expression results 
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therefore support a primary role for salivary glands in insect-eating placental mammal prey 

digestion through the use of distinct CHIA paralogs (CHIA3, CHIA4, and CHIA5) in different 

species. 

Our differential expression comparison of the distinct chitinase paralogs across 

different organs further highlighted the importance of CHIA5 for Malayan pangolin digestive 

physiology by confirming its ubiquitous expression in all major tissues of the digestive tract 

(tongue, salivary glands, stomach, pancreas, liver, and large and small intestines) (Ma et al. 

2017; Ma et al. 2019; Cheng et al. 2022; and Fig. 4). More specifically, CHIA5 was found to 

be expressed at particularly high levels in the stomach and salivary glands. These results are 

in line with previous proteomic studies that have also identified CHIA5 as a digestive enzyme 

(Zhang et al. 2019), which has been confirmed to be highly expressed by RT-qPCR in the 

specialized oxyntic glands of the stomach (Ma et al. 2018a; Cheng et al. 2022), reflecting a 

key adaptation of the Malayan pangolin to its strictly myrmecophagous diet. By contrast, in 

the southern tamandua (T. tetradactyla) only CHIA5 is pseudogenized (Emerling et al. 2018; 

Cheng et al. 2022) and all functional CHIAs were found expressed in its digestive tract but 

not in the same tissues. CHIA1 and CHIA2 were particularly highly expressed in the pancreas 

whereas CHIA3 and CHIA4 were expressed across several other organs of the digestive tract 

including tongue, salivary glands, stomach, and liver (Fig. 4). CHIA1-4 were also expressed 

in other non-digestive organs (testes,  lungs, and spleen), but their co-expression in the 

salivary glands of the three distinct southern tamandua individuals sampled here (Figs. 3, 4) 

strongly suggests that they play a crucial role in chitin digestion in this myrmecophagous 

species. Conversely, in the insectivorous nine-banded armadillo (D. novemcinctus), although 

only CHIA1 is pseudogenized (Emerling et al. 2018) and therefore not expressed, we did not 

detect any expression of CHIA2, CHIA3, and CHIA4 in the tissues of the individuals studied 

here, including salivary glands (Figs. 3, 4), and CHIA5 was only weakly expressed in one 

spleen sample (Fig. 4). Yet, chitinases could still participate in prey digestion in the nine-

banded armadillo as they have been isolated from gastric tissues (Smith et al. 1998); results 

we could not confirm here, the liver and colon being the only additional digestive organs 

besides salivary glands represented in our dataset for this species. However, the comparison 

with the two myrmecophagous species seems to fit well with its less specialized insectivorous 

diet and actually further underlines the contrasted specific use of distinct CHIA paralogs for 

chitin digestion in anteaters and pangolins.  

Our results demonstrate that in the case of the southern tamandua (T. tetradactyla) 

and the Malayan pangolin (M. javanica), two myrmecophagous species that diverged about 
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100 Ma ago (Meredith et al. 2011), convergent adaptation to myrmecophagy has been 

achieved by using paralogs of different chitinase genes to digest chitin, probably due to 

phylogenetic constraints leading to the loss of CHIA1, CHIA2, CHIA3, and CHIA4 in the 

ancestor of Ferae (Carnivora and Pholidota) as suggested by Emerling et al. (2018). 

Pangolins and anteaters present extreme morphological adaptations including the complete 

loss of dentition but a detailed study of their feeding apparatus has shown that convergent 

tooth loss resulted in divergent structures in the internal morphology of their mandible 

(Ferreira-Cardoso et al. 2019). Our results combined to this observation clearly show that the 

evolution of convergent phenotypes in myrmecophagous mammals does not necessarily 

imply similar underlying mechanisms. Our study shows that historical contingency resulted 

in molecular tinkering (sensu Jacob 1977) of the chitinase gene family at both the genomic 

and transcriptomic levels. Working from different starting materials (i.e. different CHIA 

paralogs), natural selection led pangolins and anteaters to follow different paths in their 

adaptation to the myrmecophagous diet.  

 

A potential complementary role of the gut microbiome? 
Chitinase gene family evolution seems to have been strongly influenced by historical 

contingency events related to gene loss following adaptation to a specific diet (Emerling et al. 

2018; Janiak et al. 2018; Chen and Zhao 2019; Tabata et al. 2022). For instance, fossil 

evidence showing that stem penguins primarily relied on large prey items like fish and squid 

has been invoked to explain the loss of all functional CHIA genes in all extant penguin 

species despite the recent specialization of some species towards a chitin-rich crustacean diet 

(Cole et al. 2022). One might therefore wonder why in highly specialized myrmecophagous 

groups which inherited a depauperate chitinase repertoire, such as pangolins and aardwolves, 

secondary chitinase duplications did not occur. As we demonstrated in the Malayan pangolin, 

one possible solution is to adjust the expression level of the remaining CHIA5 paralog and 

expand its expression to multiple digestive organs. However, contrary to anteaters and 

pangolins, the southern aardwolf (P. cristatus) did not seem to express any chitinase gene in 

its salivary glands (Fig. 3). The presence of frameshift mutations and stop codons was 

inspected in all nine chitinase genes in the southern aardwolf genome (Allio et al. 2021). As 

expected, CHIA1, CHIA2, CHIA3, CHIA4 were indeed found to be non functional, and 

CHI3L2 seems to be absent from the genome of the southern aardwolf as in most members of 

Carnivora (Emerling et al. 2018; Tabata et al. 2022). While no inactivating mutations could 
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be detected in the coding sequences of CHIA5, CHI3L1, CHIT1 or OVGP1, we cannot rule 

out the possibility that some specific mutations in regulatory elements inactivating the 

expression of these genes could have appeared in P. cristatus. However, we verified that the 

southern aardwolf possesses the same amino acids at positions 214 and 216 of its CHIA5 

exon 7, which control the chitinolytic activity of this chitinase, as its sister-species the striped 

hyena (Hyaena hyaena) and the other carnivore species including insects in their diet in 

which CHIA5 is fully functional (Tabata et al. 2022). This intriguing result needs to be 

confirmed by studying the expression profiles of chitinase genes across digestive organs 

including the stomach in additional aardwolf specimens. 

 The aardwolf lineage represents the sister-group of all other hyenas (Koepfli et al. 

2006; Westbury et al. 2021) from which it diverged < 10 Ma (Eizirik et al. 2010). The fossil 

record indicates that the adaptation of aardwolves to myrmecophagy is relatively recent (< 4 

Ma; Galiano et al. 2022) and there are no clear signs of specific adaptation to an exclusive 

termite-based diet in the southern aardwolf genome (Westbury et al. 2021). This raises the 

possibility that the gut microbiome might play a key role for termite digestion in this species 

as suggested by results of 16S rRNA barcoding analyses of fecal samples (Delsuc et al. 

2014). Aardwolves, and myrmecophagous mammals more broadly, therefore provide a model 

of choice for testing whether the loss of functional CHIA genes could be compensated by 

symbiotic bacteria from the gastrointestinal tract microbiota capable of degrading chitin, as 

previously shown in baleen whales eating krill (Sanders et al. 2015). A first metagenomic 

study of the fecal microbiome of the Malayan pangolin (M. javanica) previously identified a 

number of gut bacterial taxa containing chitinase genes capable of degrading chitin (Ma et al. 

2018b). A more recent study has confirmed the chitin degradation potential of the Malayan 

pangolin gut microbiome and proposed that chitin is digested in this species by a combination 

of endogenous chitinolytic enzymes produced by oxyntic glands in the stomach and bacterial 

chitinases secreted in the colon (Cheng et al. 2022). Moreover, metagenomic data of fecal 

samples from captive giant anteater (M. tridactyla) individuals have revealed a chitin 

degradation potential in their gut microbiome (Cheng et al. 2022). Future genomic and 

metagenomic studies conducted in independent myrmecophagous mammals should allow 

deciphering the relative contributions of the host genome and its associated microbiome in 

the convergent adaptation to the myrmecophagous diet.  
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Material and Methods 
Chitinase gene family tree reconstruction 

Reconstruction of chitinase gene family evolution - The chitinase family in placental 

mammals appears to be composed of nine major paralogs (CHIA1-5, CHIT1, CHI3L1, 

CHI3L2, OVGP1). Mammalian sequences similar to the protein sequence of the human 

chitinase gene (NP_970615.2) were searched in the NCBI non-redundant protein database 

using BLASTP (E-value < 10). The protein sequences identified by BLASTP were then 

imported into Geneious Prime (Kearse et al. 2012) and aligned using MAFFT v7.450 (Katoh 

and Standley 2013) with the default parameters. Preliminary gene trees were then 

reconstructed with maximum likelihood using RAxML v8.2.11 (Stamatakis 2014) under the 

LG+G4 model (Le and Gascuel 2008) as implemented in Geneious Prime. From the 

reconstructed tree, the sequences were filtered according to the following criteria: (1) fast-

evolving sequences with an E-value greater than zero and not belonging to the chitinase 

family were excluded; (2) in cases of multiple isoforms, only the longest was retained; (3) 

sequences whose length represented less than at least 50% of the total alignment length were 

removed; (4) in case of identical sequences from the same species the longest was kept; and 

(5) sequences labeled as "Hypothetical protein" and "Predicted: low quality protein" were 

discarded. This procedure resulted in a dataset containing 528 mammalian sequences that 

were realigned using MAFFT. This alignment was then cleaned up by removing sites not 

present in at least 50% of the sequences resulting in a total length of 460 amino acid sites. A 

maximum likelihood tree was then reconstructed with RAxML-NG v0.9.0 (Kozlov et al. 

2019) using 10 tree searches starting from maximum parsimony trees under the LG+G8+F 

model. The species tree of the 143 mammal species represented in our dataset was 

reconstructed based on COI sequences extracted from the BOLD system database v4 

(Ratnasingham and Hebert 2007) by searching for “Chordata” sequences in the “Taxonomy” 

section. Sequences were aligned using MAFFT, the phylogeny was inferred with RAxML 

and the topology was then adjusted manually based on the literature to correct ancient 

relationships. To determine the optimal rooting scheme, a rapid reconciliation between the 

resulting gene tree and species tree was performed using the TreeRecs reconciliation 

algorithm based on maximum parsimony (Comte et al. 2020) as implemented in SeaView 

v5.0.2 (Gouy et al. 2010). The final chitinase gene family tree was produced using the 

maximum likelihood gene family tree reconciliation approach implemented in GeneRax 

v.1.1.0 (Morel et al. 2020) using the TreeRecs reconciled tree as input (source and result  
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available from Zenodo). GeneRax can reconstruct duplications, losses and horizontal gene 

transfer events but since the latter are negligible in mammals, only gene duplications and 

losses have been modeled here (--rec-model UndatedDL) and the LG+G model was used. 

 

Ancestral sequence reconstructions - Ancestral sequences of the different paralogs were 

reconstructed from the reconciled tree using RAxML-NG (--ancestral function, --model 

LG+G8+F). The sequences were then aligned in Geneious Prime with MAFFT (source and 

result files available from Zenodo). Given that active chitinases are characterized by a 

catalytic site with a conserved amino acid motif (DXXDXDXE; Olland et al. 2009; Hamid et 

al. 2013), this motif was compared among all available species. Additionally, the six 

conserved cysteine residues responsible for chitin binding (Tjoelker et al. 2000; Olland et al. 

2009) were also investigated.   

 

Chitinase gene synteny comparisons - The synteny of the nine chitinase paralogs was 

compared between the two focal ant-eating species in our global transcriptomic analysis (T. 

tetradactyla and M. javanica), an insectivorous xenarthran species (D. novemcinctus), an 

insectivorous primate species with five functional CHIA genes (Carlito syrichta) and human 

(Homo sapiens). For H. sapiens, synteny information was added from Emerling et al. (2018) 

and completed by using Genomicus v100.01 (Nguyen et al. 2022). For C. syrichta and D. 

novemcinctus, genome assemblies have been downloaded from the National Center for 

Biotechnology Information (NCBI) and from the DNA Zoo (Choo et al. 2016; Dudchenko et 

al. 2017) for M. javanica and T. tetradactyla. Synteny information was retrieved by blasting 

(megablast) the different CDS sequences against these assemblies. Scaffold/contig names, 

positions and direction of BLAST hits were retrieved to compare their synteny (source and 

result files available from Zenodo). Genes with negative BLAST results were considered 

probably not functional or absent. 

 

Transcriptome assemblies 

Salivary gland transcriptomes - Biopsies of submandibular salivary glands (Gil et al. 2018) 

preserved in RNAlater were obtained from the Mammalian Tissue Collection of the Institut 

des Sciences de l’Evolution de Montpellier (ISEM) and the JAGUARS collection for 16 

individuals representing 12 placental mammal species (Table S1). Total RNA was extracted 

from individual salivary gland tissue samples using the RNeasy extraction kit (Qiagen, 

Germany). Then, RNA-seq library construction and Illumina sequencing on a HiSeq 2500 
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system using paired-end 2x125bp reads were conducted by the Montpellier GenomiX 

platform (MGX) resulting in 16 newly produced salivary gland transcriptomes. This sampling 

was completed with the 26 mammalian salivary gland transcriptomes available as paired-end 

Illumina sequencing reads in the Short Read Archive (SRA) of the NCBI as of December 

15th, 2022 representing an additional 21 species (Table S1). This taxon sampling includes 

representatives from all major mammal superorders Afrotheria (n = 4), Xenarthra (n = 4), 

Euarchontoglires (n = 4), and Laurasiatheria (n = 21) and covers six different diet categories: 

carnivory (n = 4), frugivory and herbivory (n = 8), insectivory (n = 9), myrmecophagy (n = 

5), and omnivory (n = 7) (Table S1). Four of the five lineages in which myrmecophagous 

mammals evolved are represented: southern aardwolf (P. cristatus, Carnivora), Malayan 

pangolin (M. javanica, Pholidota), southern naked-tailed armadillo (C. unicinctus, Cingulata), 

giant anteater (M. tridactyla, Pilosa), and southern tamandua (T. tetradactyla, Pilosa). Species 

replicates in the form of different individuals were included for the southern tamandua (T. 

tetradactyla; n = 3), the nine-banded armadillo (D. novemcinctus; n = 3), the Malayan 

pangolin (M. javanica; n = 2), the vampire bat (Desmodus rotundus; n = 2), and the 

California leaf-nosed bat (Macrotus californicus; n = 2). We unfortunately were not able to 

obtain fresh salivary gland samples from the aardvark (O. afer, Tubulidentata), the only 

missing myrmecophagous lineage in our sampling.  

 

Transcriptomes from additional organs - Tissue biopsies from nine additional organs (testis, 

lungs, heart, spleen, tongue, pancreas, stomach, liver, and small intestine) were sampled 

during dissections of three roadkill individuals of southern tamandua (T. tetradactyla; Table 

S1). Total RNA extractions from these RNAlater-preserved tissues, RNA-seq library 

construction, and sequencing were conducted as described above resulting in 13 newly 

generated transcriptomes. For comparative purposes, 21 additional transcriptomes of nine-

banded armadillo (D. novemcinctus) representing eight organs and 30 transcriptomes of 

Malayan pangolin (M. javanica) representing 16 organs were downloaded from SRA (Table 

S1).   

 

Comparative transcriptomics 

Transcriptome assemblies and quality control - Adapters and low quality reads were removed 

from raw sequencing data using fastp v0.19.6 (Chen et al. 2018) using default parameters 

except for the PHRED score which was defined as “--qualified_quality_phred ≥ 15”, as 

suggested by (MacManes 2014). Then, de novo assembly was performed on each individual 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2023. ; https://doi.org/10.1101/2022.11.29.518312doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.29.518312
http://creativecommons.org/licenses/by-nc/4.0/


 

23 

transcriptome sample using Trinity v2.8.4 (Grabherr et al. 2011) using default parameters 

(result files available from Zenodo). For one individual vampire bat (D. rotundus), three 

salivary gland transcriptomes  (SRR606902, SRR606908, and SRR606911) were combined 

to obtain a better assembly. For each of the 104 transcriptome assemblies, completeness was 

assessed by the presence of Benchmark Universal Single Copy Orthologs (BUSCO v5) based 

on a dataset of 9,226 single-copy orthologs conserved in over 90% of mammalian species 

(Manni et al. 2021). This pipeline was run through the gVolante web server (Nishimura et al. 

2017) to evaluate the percentage of complete, duplicated, fragmented and missing single copy 

orthologs within each transcriptome (Table S2). 

 

Transcriptome annotation and orthogroup inference - The 104 transcriptome assemblies 

were annotated following the pipeline implemented in assembly2ORF 

(https://github.com/ellefeg/assembly2orf). This pipeline combines evidence-based and gene-

model-based predictions. First, potential transcripts of protein-coding genes are extracted 

based on similarity searches (BLAST) against the peptides of Metazoa found in Ensembl 

(Yates et al. 2020). Then, using both protein similarity and exonerate functions (Slater and 

Birney 2005), a frameshift correction is applied to candidate transcripts. Candidate open 

reading frames (ORFs) are predicted using TransDecoder 

(https://github.com/TransDecoder/TransDecoder) and annotated based on homology 

information inferred from both BLAST and Hmmscan searches. Finally, to be able to 

compare the transcriptomes obtained from all species, we relied on the inference of gene 

orthogroups. The orthogroup inference for the translated candidate ORFs was performed 

using OrthoFinder v2 (Emms and Kelly 2019) using FastTree (Price et al. 2010) for gene tree 

reconstructions. For expression analyses, orthogroups containing more than 20 copies for at 

least one species were discarded.  

 

Gene expression analyses - Quantification of transcript expression was performed on Trinity 

assemblies with Kallisto v.0.46.1 (Bray et al. 2016) using the 

align_and_estimate_abundance.pl script provided in the Trinity suite (Grabherr et al. 2011). 

Kallisto relies on pseudo-alignments of the reads to search for the original transcript of a read 

without looking for a perfect alignment (as opposed to classical quantification by counting 

the reads aligned on the assembled transcriptome; Wolf 2013). Counts (raw number of 

mapped reads) and the Transcripts Per kilobase Million are reported (result files available 

from Zenodo). Based on the previously inferred orthogroups, orthogroup-level abundance 
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estimates were imported and summarized using tximport (Soneson et al. 2016). To minimize 

sequencing depth variation across samples and gene outlier effect (a few highly and 

differentially expressed genes may have strong and global influence on the total read count), 

orthogroup-level raw reads counts were normalized using the median of the ratios of 

observed counts using DESeq2 (Love et al. 2014) for orthogroups containing up to 20 gene 

copies by species.  

 

Chitinase expression in salivary glands - The chitinase orthogroup was extracted from the 

orthogroups inferred by OrthoFinder2 using BLASTX with the reference chitinase database 

previously created. The 476 amino acid sequences composing this orthogroup were assigned 

to the nine chitinase orthologs (CHIA1-5, CHIT1, CHI3L1, CHI3L2, OVGP1) using the 

maximum likelihood Evolutionary Placement Algorithm implemented in RAxML-EPA 

(Berger et al. 2011) with the reference chitinase sequence alignment and reconciled 

phylogenetic tree previously inferred using GeneRax (result files available from Zenodo). 

This allowed excluding three additional contaminant sequences and dividing the chitinase 

orthogroup into nine sub-orthogroups corresponding to each chitinase paralog. To take 

advantage of the transcriptome-wide expression information for the expression 

standardization, these new orthogroups were included in the previous orthogroup-level 

abundance matrix estimates and the same normalization approach using DESeq2 was 

conducted. Finally, gene-level abundance estimates for all chitinase paralogs were extracted 

and compared on a log10 scale.    

 

Data and Resource Availability 
Raw RNAseq Illumina reads have been submitted to the Short Read Archive (SRA) of the 

National Center for Biotechnology Information (NCBI) and are available  

under BioProject number PRJNA909065. Transcriptome assemblies, phylogenetic datasets, 

corresponding trees, and other supplementary materials are available from zenodo.org (DOI: 

10.5281/zenodo.7790047). 
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